Bernhard:
[rrdtool.git] / doc / rrdgraph_rpn.pod
1 =head1 NAME
2
3 rrdgraph_rpn - About RPN Math in rrdtool graph
4
5 =head1 SYNOPSIS
6
7 I<RPN expression>:=I<vname>|I<operator>|I<value>[,I<RPN expression>]
8
9 =head1 DESCRIPTION
10
11 If you have ever used a traditional HP calculator you already know
12 B<RPN>. The idea behind B<RPN> is that you have a stack and push
13 your data onto this stack. Whenever you execute an operation, it
14 takes as many elements from the stack as needed. Pushing is done
15 implicitly, so whenever you specify a number or a variable, it gets
16 pushed onto the stack automatically.
17
18 At the end of the calculation there should be one and only one value left on
19 the stack.  This is the outcome of the function and this is what is put into
20 the I<vname>.  For B<CDEF> instructions, the stack is processed for each
21 data point on the graph. B<VDEF> instructions work on an entire data set in
22 one run. Note, that currently B<VDEF> instructions only support a limited
23 list of functions.
24
25 Example: C<VDEF:maximum=mydata,MAXIMUM>
26
27 This will set variable "maximum" which you now can use in the rest
28 of your RRD script.
29
30 Example: C<CDEF:mydatabits=mydata,8,*>
31
32 This means:  push variable I<mydata>, push the number 8, execute
33 the operator I<*>. The operator needs two elements and uses those
34 to return one value.  This value is then stored in I<mydatabits>.
35 As you may have guessed, this instruction means nothing more than
36 I<mydatabits = mydata * 8>.  The real power of B<RPN> lies in the
37 fact that it is always clear in which order to process the input.
38 For expressions like C<a = b + 3 * 5> you need to multiply 3 with
39 5 first before you add I<b> to get I<a>. However, with parentheses
40 you could change this order: C<a = (b + 3) * 5>. In B<RPN>, you
41 would do C<a = b, 3, +, 5, *> without the need for parentheses.
42
43 =head1 OPERATORS
44
45 =over 4
46
47 =item Boolean operators
48
49 B<LT, LE, GT, GE, EQ, NE>
50
51 Pop two elements from the stack, compare them for the selected condition
52 and return 1 for true or 0 for false. Comparing an I<unknown> or an
53 I<infinite> value will always result in 0 (false).
54
55 B<UN, ISINF>
56
57 Pop one element from the stack, compare this to I<unknown> respectively
58 to I<positive or negative infinity>. Returns 1 for true or 0 for false.
59
60 B<IF>
61
62 Pops three elements from the stack.  If the element popped last is 0
63 (false), the value popped first is pushed back onto the stack,
64 otherwise the value popped second is pushed back. This does, indeed,
65 mean that any value other than 0 is considered to be true.
66
67 Example: C<A,B,C,IF> should be read as C<if (A) then (B) else (C)>
68
69 Z<>
70
71 =item Comparing values
72
73 B<MIN, MAX>
74
75 Pops two elements from the stack and returns the smaller or larger,
76 respectively.  Note that I<infinite> is larger than anything else.
77 If one of the input numbers is I<unknown> then the result of the operation will be
78 I<unknown> too.
79
80 B<LIMIT>
81
82 Pops two elements from the stack and uses them to define a range.
83 Then it pops another element and if it falls inside the range, it
84 is pushed back. If not, an I<unknown> is pushed.
85
86 The range defined includes the two boundaries (so: a number equal
87 to one of the boundaries will be pushed back). If any of the three
88 numbers involved is either I<unknown> or I<infinite> this function
89 will always return an I<unknown>
90
91 Example: C<CDEF:a=alpha,0,100,LIMIT> will return I<unknown> if
92 alpha is lower than 0 or if it is higher than 100.
93
94 Z<>
95
96 =item Arithmetics
97
98 B<+, -, *, /, %>
99
100 Add, subtract, multiply, divide, modulo
101
102 B<SIN, COS, LOG, EXP, SQRT>
103
104 Sine and cosine (input in radians), log and exp (natural logarithm),
105 square root.
106
107 B<ATAN>
108
109 Arctangent (output in radians).
110
111 B<ATAN2>
112
113 Arctangent of y,x components (output in radians).
114 This pops one element from the stack, the x (cosine) component, and then
115 a second, which is the y (sine) component.
116 It then pushes the arctangent of their ratio, resolving the ambiguity between
117 quadrants.
118
119 Example: C<CDEF:angle=Y,X,ATAN2,RAD2DEG> will convert C<X,Y>
120 components into an angle in degrees.
121
122 B<FLOOR, CEIL>
123
124 Round down or up to the nearest integer.
125
126 B<DEG2RAD, RAD2DEG>
127
128 Convert angle in degrees to radians, or radians to degrees.
129
130 B<ABS>
131
132 Take the absolute value.
133
134 =item Set Operations
135
136 B<SORT, REV>
137
138 Pop one element from the stack.  This is the I<count> of items to be sorted
139 (or reversed).  The top I<count> of the remaining elements are then sorted
140 (or reversed) in place on the stack.
141
142 Example: C<CDEF:x=v1,v2,v3,v4,v5,v6,6,SORT,POP,5,REV,POP,+,+,+,4,/> will
143 compute the average of the values v1 to v6 after removing the smallest and
144 largest.
145
146 B<AVG>
147
148 Pop one element (I<count>) from the stack. Now pop I<count> elements and build the
149 average, ignoring all UNKNOWN values in the process.
150
151 Example: C<CDEF:x=a,b,c,d,4,AVG>
152
153 B<TREND>
154
155 Create a "sliding window" average of another data series.
156
157 Usage:
158 CDEF:smoothed=x,1800,TREND
159
160 This will create a half-hour (1800 second) sliding window average of x.  The
161 average is essentially computed as shown here:
162
163                  +---!---!---!---!---!---!---!---!--->
164                                                      now
165                        delay     t0
166                  <--------------->
167                          delay       t1
168                      <--------------->
169                               delay      t2
170                          <--------------->
171
172
173      Value at sample (t0) will be the average between (t0-delay) and (t0)
174      Value at sample (t1) will be the average between (t1-delay) and (t1)
175      Value at sample (t2) will be the average between (t2-delay) and (t2)
176
177 =item Special values
178
179 B<UNKN>
180
181 Pushes an unknown value on the stack
182
183 B<INF, NEGINF>
184
185 Pushes a positive or negative infinite value on the stack. When
186 such a value is graphed, it appears at the top or bottom of the
187 graph, no matter what the actual value on the y-axis is.
188
189 B<PREV>
190
191 Pushes an I<unknown> value if this is the first value of a data
192 set or otherwise the result of this B<CDEF> at the previous time
193 step. This allows you to do calculations across the data.  This
194 function cannot be used in B<VDEF> instructions.
195
196 B<PREV(vname)>
197
198 Pushes an I<unknown> value if this is the first value of a data
199 set or otherwise the result of the vname variable at the previous time
200 step. This allows you to do calculations across the data. This
201 function cannot be used in B<VDEF> instructions.
202
203 B<COUNT>
204
205 Pushes the number 1 if this is the first value of the data set, the
206 number 2 if it is the second, and so on. This special value allows
207 you to make calculations based on the position of the value within
208 the data set. This function cannot be used in B<VDEF> instructions.
209
210 =item Time
211
212 Time inside RRDtool is measured in seconds since the epoch. The
213 epoch is defined to be S<C<Thu Jan  1 00:00:00 UTC 1970>>.
214
215 B<NOW>
216
217 Pushes the current time on the stack.
218
219 B<TIME>
220
221 Pushes the time the currently processed value was taken at onto the stack.
222
223 B<LTIME>
224
225 Takes the time as defined by B<TIME>, applies the time zone offset
226 valid at that time including daylight saving time if your OS supports
227 it, and pushes the result on the stack.  There is an elaborate example
228 in the examples section below on how to use this.
229
230 =item Processing the stack directly
231
232 B<DUP, POP, EXC>
233
234 Duplicate the top element, remove the top element, exchange the two
235 top elements.
236
237 Z<>
238
239 =back
240
241 =head1 VARIABLES
242
243 These operators work only on B<VDEF> statements. Note that currently ONLY these work for B<VDEF>.
244
245 =over 4
246
247 =item MAXIMUM, MINIMUM, AVERAGE
248
249 Return the corresponding value, MAXIMUM and MINIMUM also return
250 the first occurrence of that value in the time component.
251
252 Example: C<VDEF:avg=mydata,AVERAGE>
253
254 =item LAST, FIRST
255
256 Return the last/first value including its time.  The time for
257 FIRST is actually the start of the corresponding interval, whereas
258 LAST returns the end of the corresponding interval.
259
260 Example: C<VDEF:first=mydata,FIRST>
261
262 =item TOTAL
263
264 Returns the rate from each defined time slot multiplied with the
265 step size.  This can, for instance, return total bytes transfered
266 when you have logged bytes per second. The time component returns
267 the number of seconds.
268
269 Example: C<VDEF:total=mydata,TOTAL>
270
271 =item PERCENT
272
273 This should follow a B<DEF> or B<CDEF> I<vname>. The I<vname> is popped,
274 another number is popped which is a certain percentage (0..100). The
275 data set is then sorted and the value returned is chosen such that
276 I<percentage> percent of the values is lower or equal than the result.
277 I<Unknown> values are considered lower than any finite number for this
278 purpose so if this operator returns an I<unknown> you have quite a lot
279 of them in your data.  B<Inf>inite numbers are lesser, or more, than the
280 finite numbers and are always more than the I<Unknown> numbers.
281 (NaN E<lt> -INF E<lt> finite values E<lt> INF)
282
283 Example: C<VDEF:perc95=mydata,95,PERCENT>
284
285 =item LSLSLOPE, LSLINT, LSLCORREL
286
287 Return the parameters for a B<L>east B<S>quares B<L>ine I<(y = mx +b)> 
288 which approximate the provided dataset.  LSLSLOPE is the slope I<(m)> of
289 the line related to the COUNT position of the data.  LSLINT is the 
290 y-intercept I<(b)>, which happens also to be the first data point on the 
291 graph. LSLCORREL is the Correlation Coefficient (also know as Pearson's 
292 Product Moment Correlation Coefficient).  It will range from 0 to +/-1 
293 and represents the quality of fit for the approximation.   
294
295 Example: C<VDEF:slope=mydata,LSLSLOPE>
296
297 =back
298
299 =head1 SEE ALSO
300
301 L<rrdgraph> gives an overview of how B<rrdtool graph> works.
302 L<rrdgraph_data> describes B<DEF>,B<CDEF> and B<VDEF> in detail.
303 L<rrdgraph_rpn> describes the B<RPN> language used in the B<?DEF> statements.
304 L<rrdgraph_graph> page describes all of the graph and print functions.
305
306 Make sure to read L<rrdgraph_examples> for tipsE<amp>tricks.
307
308 =head1 AUTHOR
309
310 Program by Tobias Oetiker E<lt>tobi@oetiker.chE<gt>
311
312 This manual page by Alex van den Bogaerdt E<lt>alex@ergens.op.het.netE<gt>