X-Git-Url: https://git.octo.it/?a=blobdiff_plain;f=libraries%2Ffreetype-2.0.5%2Fftgrays.c;fp=libraries%2Ffreetype-2.0.5%2Fftgrays.c;h=3b8fa70297c27ab2a333bfaf93850be66cb3508a;hb=a1fe8fd19bb4f558150e52c0624869667b739877;hp=0000000000000000000000000000000000000000;hpb=e8f4081448f258adfbfa962b75d8392a7e152849;p=rrdtool.git diff --git a/libraries/freetype-2.0.5/ftgrays.c b/libraries/freetype-2.0.5/ftgrays.c new file mode 100644 index 0000000..3b8fa70 --- /dev/null +++ b/libraries/freetype-2.0.5/ftgrays.c @@ -0,0 +1,2043 @@ +/***************************************************************************/ +/* */ +/* ftgrays.c */ +/* */ +/* A new `perfect' anti-aliasing renderer (body). */ +/* */ +/* Copyright 2000-2001 by */ +/* David Turner, Robert Wilhelm, and Werner Lemberg. */ +/* */ +/* This file is part of the FreeType project, and may only be used, */ +/* modified, and distributed under the terms of the FreeType project */ +/* license, LICENSE.TXT. By continuing to use, modify, or distribute */ +/* this file you indicate that you have read the license and */ +/* understand and accept it fully. */ +/* */ +/***************************************************************************/ + + /*************************************************************************/ + /* */ + /* This file can be compiled without the rest of the FreeType engine, */ + /* by defining the _STANDALONE_ macro when compiling it. You also need */ + /* to put the files `ftgrays.h' and `ftimage.h' into the current */ + /* compilation directory. Typically, you could do something like */ + /* */ + /* - copy `src/base/ftgrays.c' to your current directory */ + /* */ + /* - copy `include/freetype/ftimage.h' and */ + /* `include/freetype/ftgrays.h' to the same directory */ + /* */ + /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */ + /* */ + /* cc -c -D_STANDALONE_ ftgrays.c */ + /* */ + /* The renderer can be initialized with a call to */ + /* `ft_gray_raster.gray_raster_new'; an anti-aliased bitmap can be */ + /* generated with a call to `ft_gray_raster.gray_raster_render'. */ + /* */ + /* See the comments and documentation in the file `ftimage.h' for */ + /* more details on how the raster works. */ + /* */ + /*************************************************************************/ + + /*************************************************************************/ + /* */ + /* This is a new anti-aliasing scan-converter for FreeType 2. The */ + /* algorithm used here is _very_ different from the one in the standard */ + /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ + /* coverage of the outline on each pixel cell. */ + /* */ + /* It is based on ideas that I initially found in Raph Levien's */ + /* excellent LibArt graphics library (see http://www.levien.com/libart */ + /* for more information, though the web pages do not tell anything */ + /* about the renderer; you'll have to dive into the source code to */ + /* understand how it works). */ + /* */ + /* Note, however, that this is a _very_ different implementation */ + /* compared to Raph's. Coverage information is stored in a very */ + /* different way, and I don't use sorted vector paths. Also, it */ + /* doesn't use floating point values. */ + /* */ + /* This renderer has the following advantages: */ + /* */ + /* - It doesn't need an intermediate bitmap. Instead, one can supply */ + /* a callback function that will be called by the renderer to draw */ + /* gray spans on any target surface. You can thus do direct */ + /* composition on any kind of bitmap, provided that you give the */ + /* renderer the right callback. */ + /* */ + /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ + /* each pixel cell */ + /* */ + /* - It performs a single pass on the outline (the `standard' FT2 */ + /* renderer makes two passes). */ + /* */ + /* - It can easily be modified to render to _any_ number of gray levels */ + /* cheaply. */ + /* */ + /* - For small (< 20) pixel sizes, it is faster than the standard */ + /* renderer. */ + /* */ + /*************************************************************************/ + + +#include /* for memcpy() */ +#include + + /*************************************************************************/ + /* */ + /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ + /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ + /* messages during execution. */ + /* */ +#undef FT_COMPONENT +#define FT_COMPONENT trace_aaraster + + +#define ErrRaster_MemoryOverflow -4 + +#ifdef _STANDALONE_ + + +#define ErrRaster_Invalid_Mode -2 +#define ErrRaster_Invalid_Outline -1 + +#include "ftimage.h" +#include "ftgrays.h" + + /* This macro is used to indicate that a function parameter is unused. */ + /* Its purpose is simply to reduce compiler warnings. Note also that */ + /* simply defining it as `(void)x' doesn't avoid warnings with certain */ + /* ANSI compilers (e.g. LCC). */ +#define FT_UNUSED( x ) (x) = (x) + + /* Disable the tracing mechanism for simplicity -- developers can */ + /* activate it easily by redefining these two macros. */ +#ifndef FT_ERROR +#define FT_ERROR( x ) do ; while ( 0 ) /* nothing */ +#endif + +#ifndef FT_TRACE +#define FT_TRACE( x ) do ; while ( 0 ) /* nothing */ +#endif + + +#else /* _STANDALONE_ */ + + +#include +#include "ftgrays.h" +#include FT_INTERNAL_OBJECTS_H +#include FT_INTERNAL_DEBUG_H +#include FT_OUTLINE_H + +#include "ftsmerrs.h" + +#define ErrRaster_Invalid_Mode Smooth_Err_Cannot_Render_Glyph +#define ErrRaster_Invalid_Outline Smooth_Err_Invalid_Outline + + +#endif /* _STANDALONE_ */ + + + /* define this to dump debugging information */ +#define xxxDEBUG_GRAYS + + /* as usual, for the speed hungry :-) */ + +#ifndef FT_STATIC_RASTER + + +#define RAS_ARG PRaster raster +#define RAS_ARG_ PRaster raster, + +#define RAS_VAR raster +#define RAS_VAR_ raster, + +#define ras (*raster) + + +#else /* FT_STATIC_RASTER */ + + +#define RAS_ARG /* empty */ +#define RAS_ARG_ /* empty */ +#define RAS_VAR /* empty */ +#define RAS_VAR_ /* empty */ + + static TRaster ras; + + +#endif /* FT_STATIC_RASTER */ + + + /* must be at least 6 bits! */ +#define PIXEL_BITS 8 + +#define ONE_PIXEL ( 1L << PIXEL_BITS ) +#define PIXEL_MASK ( -1L << PIXEL_BITS ) +#define TRUNC( x ) ( (x) >> PIXEL_BITS ) +#define SUBPIXELS( x ) ( (x) << PIXEL_BITS ) +#define FLOOR( x ) ( (x) & -ONE_PIXEL ) +#define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL ) +#define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL ) + +#if PIXEL_BITS >= 6 +#define UPSCALE( x ) ( (x) << ( PIXEL_BITS - 6 ) ) +#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) +#else +#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) +#define DOWNSCALE( x ) ( (x) << ( 6 - PIXEL_BITS ) ) +#endif + + /* Define this if you want to use a more compact storage scheme. This */ + /* increases the number of cells available in the render pool but slows */ + /* down the rendering a bit. It is useful if you have a really tiny */ + /* render pool. */ +#define xxxGRAYS_COMPACT + + + /*************************************************************************/ + /* */ + /* TYPE DEFINITIONS */ + /* */ + + /* don't change the following types to FT_Int or FT_Pos, since we might */ + /* need to define them to "float" or "double" when experimenting with */ + /* new algorithms */ + + typedef int TScan; /* integer scanline/pixel coordinate */ + typedef long TPos; /* sub-pixel coordinate */ + + /* determine the type used to store cell areas. This normally takes at */ + /* least PIXEL_BYTES*2 + 1. On 16-bit systems, we need to use `long' */ + /* instead of `int', otherwise bad things happen */ + +#if PIXEL_BITS <= 7 + + typedef int TArea; + +#else /* PIXEL_BITS >= 8 */ + + /* approximately determine the size of integers using an ANSI-C header */ +#include + +#if UINT_MAX == 0xFFFFU + typedef long TArea; +#else + typedef int TArea; +#endif + +#endif /* PIXEL_BITS >= 8 */ + + + /* maximal number of gray spans in a call to the span callback */ +#define FT_MAX_GRAY_SPANS 32 + + +#ifdef GRAYS_COMPACT + + typedef struct TCell_ + { + short x : 14; + short y : 14; + int cover : PIXEL_BITS + 2; + int area : PIXEL_BITS * 2 + 2; + + } TCell, *PCell; + +#else /* GRAYS_COMPACT */ + + typedef struct TCell_ + { + TScan x; + TScan y; + int cover; + TArea area; + + } TCell, *PCell; + +#endif /* GRAYS_COMPACT */ + + + typedef struct TRaster_ + { + PCell cells; + int max_cells; + int num_cells; + + TScan min_ex, max_ex; + TScan min_ey, max_ey; + + TArea area; + int cover; + int invalid; + + TScan ex, ey; + TScan cx, cy; + TPos x, y; + + TScan last_ey; + + FT_Vector bez_stack[32 * 3 + 1]; + int lev_stack[32]; + + FT_Outline outline; + FT_Bitmap target; + FT_BBox clip_box; + + FT_Span gray_spans[FT_MAX_GRAY_SPANS]; + int num_gray_spans; + + FT_Raster_Span_Func render_span; + void* render_span_data; + int span_y; + + int band_size; + int band_shoot; + int conic_level; + int cubic_level; + + void* memory; + jmp_buf jump_buffer; + + } TRaster, *PRaster; + + + /*************************************************************************/ + /* */ + /* Initialize the cells table. */ + /* */ + static void + gray_init_cells( RAS_ARG_ void* buffer, + long byte_size ) + { + ras.cells = (PCell)buffer; + ras.max_cells = byte_size / sizeof ( TCell ); + ras.num_cells = 0; + ras.area = 0; + ras.cover = 0; + ras.invalid = 1; + } + + + /*************************************************************************/ + /* */ + /* Compute the outline bounding box. */ + /* */ + static void + gray_compute_cbox( RAS_ARG ) + { + FT_Outline* outline = &ras.outline; + FT_Vector* vec = outline->points; + FT_Vector* limit = vec + outline->n_points; + + + if ( outline->n_points <= 0 ) + { + ras.min_ex = ras.max_ex = 0; + ras.min_ey = ras.max_ey = 0; + return; + } + + ras.min_ex = ras.max_ex = vec->x; + ras.min_ey = ras.max_ey = vec->y; + + vec++; + + for ( ; vec < limit; vec++ ) + { + TPos x = vec->x; + TPos y = vec->y; + + + if ( x < ras.min_ex ) ras.min_ex = x; + if ( x > ras.max_ex ) ras.max_ex = x; + if ( y < ras.min_ey ) ras.min_ey = y; + if ( y > ras.max_ey ) ras.max_ey = y; + } + + /* truncate the bounding box to integer pixels */ + ras.min_ex = ras.min_ex >> 6; + ras.min_ey = ras.min_ey >> 6; + ras.max_ex = ( ras.max_ex + 63 ) >> 6; + ras.max_ey = ( ras.max_ey + 63 ) >> 6; + } + + + /*************************************************************************/ + /* */ + /* Record the current cell in the table. */ + /* */ + static void + gray_record_cell( RAS_ARG ) + { + PCell cell; + + + if ( !ras.invalid && ( ras.area | ras.cover ) ) + { + if ( ras.num_cells >= ras.max_cells ) + longjmp( ras.jump_buffer, 1 ); + + cell = ras.cells + ras.num_cells++; + cell->x = ras.ex - ras.min_ex; + cell->y = ras.ey - ras.min_ey; + cell->area = ras.area; + cell->cover = ras.cover; + } + } + + + /*************************************************************************/ + /* */ + /* Set the current cell to a new position. */ + /* */ + static void + gray_set_cell( RAS_ARG_ TScan ex, + TScan ey ) + { + int invalid, record, clean; + + + /* Move the cell pointer to a new position. We set the `invalid' */ + /* flag to indicate that the cell isn't part of those we're interested */ + /* in during the render phase. This means that: */ + /* */ + /* . the new vertical position must be within min_ey..max_ey-1. */ + /* . the new horizontal position must be strictly less than max_ex */ + /* */ + /* Note that if a cell is to the left of the clipping region, it is */ + /* actually set to the (min_ex-1) horizontal position. */ + + record = 0; + clean = 1; + + invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex ); + if ( !invalid ) + { + /* All cells that are on the left of the clipping region go to the */ + /* min_ex - 1 horizontal position. */ + if ( ex < ras.min_ex ) + ex = ras.min_ex - 1; + + /* if our position is new, then record the previous cell */ + if ( ex != ras.ex || ey != ras.ey ) + record = 1; + else + clean = ras.invalid; /* do not clean if we didn't move from */ + /* a valid cell */ + } + + /* record the previous cell if needed (i.e., if we changed the cell */ + /* position, of changed the `invalid' flag) */ + if ( ras.invalid != invalid || record ) + gray_record_cell( RAS_VAR ); + + if ( clean ) + { + ras.area = 0; + ras.cover = 0; + } + + ras.invalid = invalid; + ras.ex = ex; + ras.ey = ey; + } + + + /*************************************************************************/ + /* */ + /* Start a new contour at a given cell. */ + /* */ + static void + gray_start_cell( RAS_ARG_ TScan ex, + TScan ey ) + { + if ( ex < ras.min_ex ) + ex = ras.min_ex - 1; + + ras.area = 0; + ras.cover = 0; + ras.ex = ex; + ras.ey = ey; + ras.last_ey = SUBPIXELS( ey ); + ras.invalid = 0; + + gray_set_cell( RAS_VAR_ ex, ey ); + } + + + /*************************************************************************/ + /* */ + /* Render a scanline as one or more cells. */ + /* */ + static void + gray_render_scanline( RAS_ARG_ TScan ey, + TPos x1, + TScan y1, + TPos x2, + TScan y2 ) + { + TScan ex1, ex2, fx1, fx2, delta; + long p, first, dx; + int incr, lift, mod, rem; + + + dx = x2 - x1; + + ex1 = TRUNC( x1 ); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */ + ex2 = TRUNC( x2 ); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */ + fx1 = x1 - SUBPIXELS( ex1 ); + fx2 = x2 - SUBPIXELS( ex2 ); + + /* trivial case. Happens often */ + if ( y1 == y2 ) + { + gray_set_cell( RAS_VAR_ ex2, ey ); + return; + } + + /* everything is located in a single cell. That is easy! */ + /* */ + if ( ex1 == ex2 ) + { + delta = y2 - y1; + ras.area += (TArea)( fx1 + fx2 ) * delta; + ras.cover += delta; + return; + } + + /* ok, we'll have to render a run of adjacent cells on the same */ + /* scanline... */ + /* */ + p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 ); + first = ONE_PIXEL; + incr = 1; + + if ( dx < 0 ) + { + p = fx1 * ( y2 - y1 ); + first = 0; + incr = -1; + dx = -dx; + } + + delta = p / dx; + mod = p % dx; + if ( mod < 0 ) + { + delta--; + mod += dx; + } + + ras.area += (TArea)( fx1 + first ) * delta; + ras.cover += delta; + + ex1 += incr; + gray_set_cell( RAS_VAR_ ex1, ey ); + y1 += delta; + + if ( ex1 != ex2 ) + { + p = ONE_PIXEL * ( y2 - y1 ); + lift = p / dx; + rem = p % dx; + if ( rem < 0 ) + { + lift--; + rem += dx; + } + + mod -= dx; + + while ( ex1 != ex2 ) + { + delta = lift; + mod += rem; + if ( mod >= 0 ) + { + mod -= dx; + delta++; + } + + ras.area += (TArea)ONE_PIXEL * delta; + ras.cover += delta; + y1 += delta; + ex1 += incr; + gray_set_cell( RAS_VAR_ ex1, ey ); + } + } + + delta = y2 - y1; + ras.area += (TArea)( fx2 + ONE_PIXEL - first ) * delta; + ras.cover += delta; + } + + + /*************************************************************************/ + /* */ + /* Render a given line as a series of scanlines. */ + /* */ + static void + gray_render_line( RAS_ARG_ TPos to_x, + TPos to_y ) + { + TScan ey1, ey2, fy1, fy2; + TPos dx, dy, x, x2; + int p, rem, mod, lift, delta, first, incr; + + + ey1 = TRUNC( ras.last_ey ); + ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ + fy1 = ras.y - ras.last_ey; + fy2 = to_y - SUBPIXELS( ey2 ); + + dx = to_x - ras.x; + dy = to_y - ras.y; + + /* XXX: we should do something about the trivial case where dx == 0, */ + /* as it happens very often! */ + + /* perform vertical clipping */ + { + TScan min, max; + + + min = ey1; + max = ey2; + if ( ey1 > ey2 ) + { + min = ey2; + max = ey1; + } + if ( min >= ras.max_ey || max < ras.min_ey ) + goto End; + } + + /* everything is on a single scanline */ + if ( ey1 == ey2 ) + { + gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ); + goto End; + } + + /* ok, we have to render several scanlines */ + p = ( ONE_PIXEL - fy1 ) * dx; + first = ONE_PIXEL; + incr = 1; + + if ( dy < 0 ) + { + p = fy1 * dx; + first = 0; + incr = -1; + dy = -dy; + } + + delta = p / dy; + mod = p % dy; + if ( mod < 0 ) + { + delta--; + mod += dy; + } + + x = ras.x + delta; + gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ); + + ey1 += incr; + gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); + + if ( ey1 != ey2 ) + { + p = ONE_PIXEL * dx; + lift = p / dy; + rem = p % dy; + if ( rem < 0 ) + { + lift--; + rem += dy; + } + mod -= dy; + + while ( ey1 != ey2 ) + { + delta = lift; + mod += rem; + if ( mod >= 0 ) + { + mod -= dy; + delta++; + } + + x2 = x + delta; + gray_render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL - first, x2, first ); + x = x2; + + ey1 += incr; + gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 ); + } + } + + gray_render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL - first, to_x, fy2 ); + + End: + ras.x = to_x; + ras.y = to_y; + ras.last_ey = SUBPIXELS( ey2 ); + } + + + static void + gray_split_conic( FT_Vector* base ) + { + TPos a, b; + + + base[4].x = base[2].x; + b = base[1].x; + a = base[3].x = ( base[2].x + b ) / 2; + b = base[1].x = ( base[0].x + b ) / 2; + base[2].x = ( a + b ) / 2; + + base[4].y = base[2].y; + b = base[1].y; + a = base[3].y = ( base[2].y + b ) / 2; + b = base[1].y = ( base[0].y + b ) / 2; + base[2].y = ( a + b ) / 2; + } + + + static void + gray_render_conic( RAS_ARG_ FT_Vector* control, + FT_Vector* to ) + { + TPos dx, dy; + int top, level; + int* levels; + FT_Vector* arc; + + + dx = DOWNSCALE( ras.x ) + to->x - ( control->x << 1 ); + if ( dx < 0 ) + dx = -dx; + dy = DOWNSCALE( ras.y ) + to->y - ( control->y << 1 ); + if ( dy < 0 ) + dy = -dy; + if ( dx < dy ) + dx = dy; + + level = 1; + dx = dx / ras.conic_level; + while ( dx > 0 ) + { + dx >>= 2; + level++; + } + + /* a shortcut to speed things up */ + if ( level <= 1 ) + { + /* we compute the mid-point directly in order to avoid */ + /* calling gray_split_conic() */ + TPos to_x, to_y, mid_x, mid_y; + + + to_x = UPSCALE( to->x ); + to_y = UPSCALE( to->y ); + mid_x = ( ras.x + to_x + 2 * UPSCALE( control->x ) ) / 4; + mid_y = ( ras.y + to_y + 2 * UPSCALE( control->y ) ) / 4; + + gray_render_line( RAS_VAR_ mid_x, mid_y ); + gray_render_line( RAS_VAR_ to_x, to_y ); + return; + } + + arc = ras.bez_stack; + levels = ras.lev_stack; + top = 0; + levels[0] = level; + + arc[0].x = UPSCALE( to->x ); + arc[0].y = UPSCALE( to->y ); + arc[1].x = UPSCALE( control->x ); + arc[1].y = UPSCALE( control->y ); + arc[2].x = ras.x; + arc[2].y = ras.y; + + while ( top >= 0 ) + { + level = levels[top]; + if ( level > 1 ) + { + /* check that the arc crosses the current band */ + TPos min, max, y; + + + min = max = arc[0].y; + + y = arc[1].y; + if ( y < min ) min = y; + if ( y > max ) max = y; + + y = arc[2].y; + if ( y < min ) min = y; + if ( y > max ) max = y; + + if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 ) + goto Draw; + + gray_split_conic( arc ); + arc += 2; + top++; + levels[top] = levels[top - 1] = level - 1; + continue; + } + + Draw: + { + TPos to_x, to_y, mid_x, mid_y; + + + to_x = arc[0].x; + to_y = arc[0].y; + mid_x = ( ras.x + to_x + 2 * arc[1].x ) / 4; + mid_y = ( ras.y + to_y + 2 * arc[1].y ) / 4; + + gray_render_line( RAS_VAR_ mid_x, mid_y ); + gray_render_line( RAS_VAR_ to_x, to_y ); + + top--; + arc -= 2; + } + } + return; + } + + + static void + gray_split_cubic( FT_Vector* base ) + { + TPos a, b, c, d; + + + base[6].x = base[3].x; + c = base[1].x; + d = base[2].x; + base[1].x = a = ( base[0].x + c ) / 2; + base[5].x = b = ( base[3].x + d ) / 2; + c = ( c + d ) / 2; + base[2].x = a = ( a + c ) / 2; + base[4].x = b = ( b + c ) / 2; + base[3].x = ( a + b ) / 2; + + base[6].y = base[3].y; + c = base[1].y; + d = base[2].y; + base[1].y = a = ( base[0].y + c ) / 2; + base[5].y = b = ( base[3].y + d ) / 2; + c = ( c + d ) / 2; + base[2].y = a = ( a + c ) / 2; + base[4].y = b = ( b + c ) / 2; + base[3].y = ( a + b ) / 2; + } + + + static void + gray_render_cubic( RAS_ARG_ FT_Vector* control1, + FT_Vector* control2, + FT_Vector* to ) + { + TPos dx, dy, da, db; + int top, level; + int* levels; + FT_Vector* arc; + + + dx = DOWNSCALE( ras.x ) + to->x - ( control1->x << 1 ); + if ( dx < 0 ) + dx = -dx; + dy = DOWNSCALE( ras.y ) + to->y - ( control1->y << 1 ); + if ( dy < 0 ) + dy = -dy; + if ( dx < dy ) + dx = dy; + da = dx; + + dx = DOWNSCALE( ras.x ) + to->x - 3 * ( control1->x + control2->x ); + if ( dx < 0 ) + dx = -dx; + dy = DOWNSCALE( ras.y ) + to->y - 3 * ( control1->x + control2->y ); + if ( dy < 0 ) + dy = -dy; + if ( dx < dy ) + dx = dy; + db = dx; + + level = 1; + da = da / ras.cubic_level; + db = db / ras.conic_level; + while ( da > 0 || db > 0 ) + { + da >>= 2; + db >>= 3; + level++; + } + + if ( level <= 1 ) + { + TPos to_x, to_y, mid_x, mid_y; + + + to_x = UPSCALE( to->x ); + to_y = UPSCALE( to->y ); + mid_x = ( ras.x + to_x + + 3 * UPSCALE( control1->x + control2->x ) ) / 8; + mid_y = ( ras.y + to_y + + 3 * UPSCALE( control1->y + control2->y ) ) / 8; + + gray_render_line( RAS_VAR_ mid_x, mid_y ); + gray_render_line( RAS_VAR_ to_x, to_y ); + return; + } + + arc = ras.bez_stack; + arc[0].x = UPSCALE( to->x ); + arc[0].y = UPSCALE( to->y ); + arc[1].x = UPSCALE( control2->x ); + arc[1].y = UPSCALE( control2->y ); + arc[2].x = UPSCALE( control1->x ); + arc[2].y = UPSCALE( control1->y ); + arc[3].x = ras.x; + arc[3].y = ras.y; + + levels = ras.lev_stack; + top = 0; + levels[0] = level; + + while ( top >= 0 ) + { + level = levels[top]; + if ( level > 1 ) + { + /* check that the arc crosses the current band */ + TPos min, max, y; + + + min = max = arc[0].y; + y = arc[1].y; + if ( y < min ) min = y; + if ( y > max ) max = y; + y = arc[2].y; + if ( y < min ) min = y; + if ( y > max ) max = y; + y = arc[3].y; + if ( y < min ) min = y; + if ( y > max ) max = y; + if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 ) + goto Draw; + gray_split_cubic( arc ); + arc += 3; + top ++; + levels[top] = levels[top - 1] = level - 1; + continue; + } + + Draw: + { + TPos to_x, to_y, mid_x, mid_y; + + + to_x = arc[0].x; + to_y = arc[0].y; + mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8; + mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8; + + gray_render_line( RAS_VAR_ mid_x, mid_y ); + gray_render_line( RAS_VAR_ to_x, to_y ); + top --; + arc -= 3; + } + } + return; + } + + + /* a macro comparing two cell pointers. Returns true if a <= b. */ +#if 1 + +#define PACK( a ) ( ( (long)(a)->y << 16 ) + (a)->x ) +#define LESS_THAN( a, b ) ( PACK( a ) < PACK( b ) ) + +#else /* 1 */ + +#define LESS_THAN( a, b ) ( (a)->y < (b)->y || \ + ( (a)->y == (b)->y && (a)->x < (b)->x ) ) + +#endif /* 1 */ + +#define SWAP_CELLS( a, b, temp ) do \ + { \ + temp = *(a); \ + *(a) = *(b); \ + *(b) = temp; \ + } while ( 0 ) +#define DEBUG_SORT +#define QUICK_SORT + +#ifdef SHELL_SORT + + /* a simple shell sort algorithm that works directly on our */ + /* cells table */ + static void + gray_shell_sort ( PCell cells, + int count ) + { + PCell i, j, limit = cells + count; + TCell temp; + int gap; + + + /* compute initial gap */ + for ( gap = 0; ++gap < count; gap *= 3 ) + ; + + while ( gap /= 3 ) + { + for ( i = cells + gap; i < limit; i++ ) + { + for ( j = i - gap; ; j -= gap ) + { + PCell k = j + gap; + + + if ( LESS_THAN( j, k ) ) + break; + + SWAP_CELLS( j, k, temp ); + + if ( j < cells + gap ) + break; + } + } + } + } + +#endif /* SHELL_SORT */ + + +#ifdef QUICK_SORT + + /* This is a non-recursive quicksort that directly process our cells */ + /* array. It should be faster than calling the stdlib qsort(), and we */ + /* can even tailor our insertion threshold... */ + +#define QSORT_THRESHOLD 9 /* below this size, a sub-array will be sorted */ + /* through a normal insertion sort */ + + static void + gray_quick_sort( PCell cells, + int count ) + { + PCell stack[40]; /* should be enough ;-) */ + PCell* top; /* top of stack */ + PCell base, limit; + TCell temp; + + + limit = cells + count; + base = cells; + top = stack; + + for (;;) + { + int len = (int)( limit - base ); + PCell i, j, pivot; + + + if ( len > QSORT_THRESHOLD ) + { + /* we use base + len/2 as the pivot */ + pivot = base + len / 2; + SWAP_CELLS( base, pivot, temp ); + + i = base + 1; + j = limit - 1; + + /* now ensure that *i <= *base <= *j */ + if ( LESS_THAN( j, i ) ) + SWAP_CELLS( i, j, temp ); + + if ( LESS_THAN( base, i ) ) + SWAP_CELLS( base, i, temp ); + + if ( LESS_THAN( j, base ) ) + SWAP_CELLS( base, j, temp ); + + for (;;) + { + do i++; while ( LESS_THAN( i, base ) ); + do j--; while ( LESS_THAN( base, j ) ); + + if ( i > j ) + break; + + SWAP_CELLS( i, j, temp ); + } + + SWAP_CELLS( base, j, temp ); + + /* now, push the largest sub-array */ + if ( j - base > limit - i ) + { + top[0] = base; + top[1] = j; + base = i; + } + else + { + top[0] = i; + top[1] = limit; + limit = j; + } + top += 2; + } + else + { + /* the sub-array is small, perform insertion sort */ + j = base; + i = j + 1; + + for ( ; i < limit; j = i, i++ ) + { + for ( ; LESS_THAN( j + 1, j ); j-- ) + { + SWAP_CELLS( j + 1, j, temp ); + if ( j == base ) + break; + } + } + if ( top > stack ) + { + top -= 2; + base = top[0]; + limit = top[1]; + } + else + break; + } + } + } + +#endif /* QUICK_SORT */ + + +#ifdef DEBUG_GRAYS +#ifdef DEBUG_SORT + + static int + gray_check_sort( PCell cells, + int count ) + { + PCell p, q; + + + for ( p = cells + count - 2; p >= cells; p-- ) + { + q = p + 1; + if ( !LESS_THAN( p, q ) ) + return 0; + } + return 1; + } + +#endif /* DEBUG_SORT */ +#endif /* DEBUG_GRAYS */ + + + static int + gray_move_to( FT_Vector* to, + FT_Raster raster ) + { + TPos x, y; + + + /* record current cell, if any */ + gray_record_cell( (PRaster)raster ); + + /* start to a new position */ + x = UPSCALE( to->x ); + y = UPSCALE( to->y ); + + gray_start_cell( (PRaster)raster, TRUNC( x ), TRUNC( y ) ); + + ((PRaster)raster)->x = x; + ((PRaster)raster)->y = y; + return 0; + } + + + static int + gray_line_to( FT_Vector* to, + FT_Raster raster ) + { + gray_render_line( (PRaster)raster, + UPSCALE( to->x ), UPSCALE( to->y ) ); + return 0; + } + + + static int + gray_conic_to( FT_Vector* control, + FT_Vector* to, + FT_Raster raster ) + { + gray_render_conic( (PRaster)raster, control, to ); + return 0; + } + + + static int + gray_cubic_to( FT_Vector* control1, + FT_Vector* control2, + FT_Vector* to, + FT_Raster raster ) + { + gray_render_cubic( (PRaster)raster, control1, control2, to ); + return 0; + } + + + static void + gray_render_span( int y, + int count, + FT_Span* spans, + PRaster raster ) + { + unsigned char* p; + FT_Bitmap* map = &raster->target; + + + /* first of all, compute the scanline offset */ + p = (unsigned char*)map->buffer - y * map->pitch; + if ( map->pitch >= 0 ) + p += ( map->rows - 1 ) * map->pitch; + + for ( ; count > 0; count--, spans++ ) + { + if ( spans->coverage ) +#if 1 + memset( p + spans->x, (unsigned char)spans->coverage, spans->len ); +#else /* 1 */ + { + q = p + spans->x; + limit = q + spans->len; + for ( ; q < limit; q++ ) + q[0] = (unsigned char)spans->coverage; + } +#endif /* 1 */ + } + } + + +#ifdef DEBUG_GRAYS + +#include + + static void + gray_dump_cells( RAS_ARG ) + { + PCell cell, limit; + int y = -1; + + + cell = ras.cells; + limit = cell + ras.num_cells; + + for ( ; cell < limit; cell++ ) + { + if ( cell->y != y ) + { + fprintf( stderr, "\n%2d: ", cell->y ); + y = cell->y; + } + fprintf( stderr, "[%d %d %d]", + cell->x, cell->area, cell->cover ); + } + fprintf(stderr, "\n" ); + } + +#endif /* DEBUG_GRAYS */ + + + static void + gray_hline( RAS_ARG_ TScan x, + TScan y, + TPos area, + int acount ) + { + FT_Span* span; + int count; + int coverage; + + + /* compute the coverage line's coverage, depending on the */ + /* outline fill rule */ + /* */ + /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ + /* */ + coverage = area >> ( PIXEL_BITS * 2 + 1 - 8); /* use range 0..256 */ + + if ( ras.outline.flags & ft_outline_even_odd_fill ) + { + if ( coverage < 0 ) + coverage = -coverage; + + while ( coverage >= 512 ) + coverage -= 512; + + if ( coverage > 256 ) + coverage = 512 - coverage; + else if ( coverage == 256 ) + coverage = 255; + } + else + { + /* normal non-zero winding rule */ + if ( coverage < 0 ) + coverage = -coverage; + + if ( coverage >= 256 ) + coverage = 255; + } + + y += ras.min_ey; + x += ras.min_ex; + + if ( coverage ) + { + /* see if we can add this span to the current list */ + count = ras.num_gray_spans; + span = ras.gray_spans + count - 1; + if ( count > 0 && + ras.span_y == y && + (int)span->x + span->len == (int)x && + span->coverage == coverage ) + { + span->len = (unsigned short)( span->len + acount ); + return; + } + + if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS ) + { + if ( ras.render_span && count > 0 ) + ras.render_span( ras.span_y, count, ras.gray_spans, + ras.render_span_data ); + /* ras.render_span( span->y, ras.gray_spans, count ); */ + +#ifdef DEBUG_GRAYS + + if ( ras.span_y >= 0 ) + { + int n; + + + fprintf( stderr, "y=%3d ", ras.span_y ); + span = ras.gray_spans; + for ( n = 0; n < count; n++, span++ ) + fprintf( stderr, "[%d..%d]:%02x ", + span->x, span->x + span->len - 1, span->coverage ); + fprintf( stderr, "\n" ); + } + +#endif /* DEBUG_GRAYS */ + + ras.num_gray_spans = 0; + ras.span_y = y; + + count = 0; + span = ras.gray_spans; + } + else + span++; + + /* add a gray span to the current list */ + span->x = (short)x; + span->len = (unsigned short)acount; + span->coverage = (unsigned char)coverage; + ras.num_gray_spans++; + } + } + + + static void + gray_sweep( RAS_ARG_ FT_Bitmap* target ) + { + TScan x, y, cover; + TArea area; + PCell start, cur, limit; + + FT_UNUSED( target ); + + if ( ras.num_cells == 0 ) + return; + + cur = ras.cells; + limit = cur + ras.num_cells; + + cover = 0; + ras.span_y = -1; + ras.num_gray_spans = 0; + + for (;;) + { + start = cur; + y = start->y; + x = start->x; + + area = start->area; + cover += start->cover; + + /* accumulate all start cells */ + for (;;) + { + ++cur; + if ( cur >= limit || cur->y != start->y || cur->x != start->x ) + break; + + area += cur->area; + cover += cur->cover; + } + + /* if the start cell has a non-null area, we must draw an */ + /* individual gray pixel there */ + if ( area && x >= 0 ) + { + gray_hline( RAS_VAR_ x, y, cover * ( ONE_PIXEL * 2 ) - area, 1 ); + x++; + } + + if ( x < 0 ) + x = 0; + + if ( cur < limit && start->y == cur->y ) + { + /* draw a gray span between the start cell and the current one */ + if ( cur->x > x ) + gray_hline( RAS_VAR_ x, y, + cover * ( ONE_PIXEL * 2 ), cur->x - x ); + } + else + { + /* draw a gray span until the end of the clipping region */ + if ( cover && x < ras.max_ex - ras.min_ex ) + gray_hline( RAS_VAR_ x, y, + cover * ( ONE_PIXEL * 2 ), + ras.max_ex - x - ras.min_ex ); + cover = 0; + } + + if ( cur >= limit ) + break; + } + + if ( ras.render_span && ras.num_gray_spans > 0 ) + ras.render_span( ras.span_y, ras.num_gray_spans, + ras.gray_spans, ras.render_span_data ); + +#ifdef DEBUG_GRAYS + + { + int n; + FT_Span* span; + + + fprintf( stderr, "y=%3d ", ras.span_y ); + span = ras.gray_spans; + for ( n = 0; n < ras.num_gray_spans; n++, span++ ) + fprintf( stderr, "[%d..%d]:%02x ", + span->x, span->x + span->len - 1, span->coverage ); + fprintf( stderr, "\n" ); + } + +#endif /* DEBUG_GRAYS */ + + } + + +#ifdef _STANDALONE_ + + /*************************************************************************/ + /* */ + /* The following function should only compile in stand_alone mode, */ + /* i.e., when building this component without the rest of FreeType. */ + /* */ + /*************************************************************************/ + + /*************************************************************************/ + /* */ + /* */ + /* FT_Outline_Decompose */ + /* */ + /* */ + /* Walks over an outline's structure to decompose it into individual */ + /* segments and Bezier arcs. This function is also able to emit */ + /* `move to' and `close to' operations to indicate the start and end */ + /* of new contours in the outline. */ + /* */ + /* */ + /* outline :: A pointer to the source target. */ + /* */ + /* interface :: A table of `emitters', i.e,. function pointers called */ + /* during decomposition to indicate path operations. */ + /* */ + /* user :: A typeless pointer which is passed to each emitter */ + /* during the decomposition. It can be used to store */ + /* the state during the decomposition. */ + /* */ + /* */ + /* Error code. 0 means sucess. */ + /* */ + static + int FT_Outline_Decompose( FT_Outline* outline, + const FT_Outline_Funcs* interface, + void* user ) + { +#undef SCALED +#if 0 +#define SCALED( x ) ( ( (x) << shift ) - delta ) +#else +#define SCALED( x ) (x) +#endif + + FT_Vector v_last; + FT_Vector v_control; + FT_Vector v_start; + + FT_Vector* point; + FT_Vector* limit; + char* tags; + + int n; /* index of contour in outline */ + int first; /* index of first point in contour */ + int error; + char tag; /* current point's state */ + +#if 0 + int shift = interface->shift; + FT_Pos delta = interface->delta; +#endif + + + first = 0; + + for ( n = 0; n < outline->n_contours; n++ ) + { + int last; /* index of last point in contour */ + + + last = outline->contours[n]; + limit = outline->points + last; + + v_start = outline->points[first]; + v_last = outline->points[last]; + + v_start.x = SCALED( v_start.x ); v_start.y = SCALED( v_start.y ); + v_last.x = SCALED( v_last.x ); v_last.y = SCALED( v_last.y ); + + v_control = v_start; + + point = outline->points + first; + tags = outline->tags + first; + tag = FT_CURVE_TAG( tags[0] ); + + /* A contour cannot start with a cubic control point! */ + if ( tag == FT_Curve_Tag_Cubic ) + goto Invalid_Outline; + + /* check first point to determine origin */ + if ( tag == FT_Curve_Tag_Conic ) + { + /* first point is conic control. Yes, this happens. */ + if ( FT_CURVE_TAG( outline->tags[last] ) == FT_Curve_Tag_On ) + { + /* start at last point if it is on the curve */ + v_start = v_last; + limit--; + } + else + { + /* if both first and last points are conic, */ + /* start at their middle and record its position */ + /* for closure */ + v_start.x = ( v_start.x + v_last.x ) / 2; + v_start.y = ( v_start.y + v_last.y ) / 2; + + v_last = v_start; + } + point--; + tags--; + } + + error = interface->move_to( &v_start, user ); + if ( error ) + goto Exit; + + while ( point < limit ) + { + point++; + tags++; + + tag = FT_CURVE_TAG( tags[0] ); + switch ( tag ) + { + case FT_Curve_Tag_On: /* emit a single line_to */ + { + FT_Vector vec; + + + vec.x = SCALED( point->x ); + vec.y = SCALED( point->y ); + + error = interface->line_to( &vec, user ); + if ( error ) + goto Exit; + continue; + } + + case FT_Curve_Tag_Conic: /* consume conic arcs */ + { + v_control.x = SCALED( point->x ); + v_control.y = SCALED( point->y ); + + Do_Conic: + if ( point < limit ) + { + FT_Vector vec; + FT_Vector v_middle; + + + point++; + tags++; + tag = FT_CURVE_TAG( tags[0] ); + + vec.x = SCALED( point->x ); + vec.y = SCALED( point->y ); + + if ( tag == FT_Curve_Tag_On ) + { + error = interface->conic_to( &v_control, &vec, user ); + if ( error ) + goto Exit; + continue; + } + + if ( tag != FT_Curve_Tag_Conic ) + goto Invalid_Outline; + + v_middle.x = ( v_control.x + vec.x ) / 2; + v_middle.y = ( v_control.y + vec.y ) / 2; + + error = interface->conic_to( &v_control, &v_middle, user ); + if ( error ) + goto Exit; + + v_control = vec; + goto Do_Conic; + } + + error = interface->conic_to( &v_control, &v_start, user ); + goto Close; + } + + default: /* FT_Curve_Tag_Cubic */ + { + FT_Vector vec1, vec2; + + + if ( point + 1 > limit || + FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic ) + goto Invalid_Outline; + + point += 2; + tags += 2; + + vec1.x = SCALED( point[-2].x ); vec1.y = SCALED( point[-2].y ); + vec2.x = SCALED( point[-1].x ); vec2.y = SCALED( point[-1].y ); + + if ( point <= limit ) + { + FT_Vector vec; + + + vec.x = SCALED( point->x ); + vec.y = SCALED( point->y ); + + error = interface->cubic_to( &vec1, &vec2, &vec, user ); + if ( error ) + goto Exit; + continue; + } + + error = interface->cubic_to( &vec1, &vec2, &v_start, user ); + goto Close; + } + } + } + + /* close the contour with a line segment */ + error = interface->line_to( &v_start, user ); + + Close: + if ( error ) + goto Exit; + + first = last + 1; + } + + return 0; + + Exit: + return error; + + Invalid_Outline: + return ErrRaster_Invalid_Outline; + } + +#endif /* _STANDALONE_ */ + + + typedef struct TBand_ + { + FT_Pos min, max; + + } TBand; + + + static int + gray_convert_glyph_inner( RAS_ARG ) + { + static + const FT_Outline_Funcs interface = + { + (FT_Outline_MoveTo_Func) gray_move_to, + (FT_Outline_LineTo_Func) gray_line_to, + (FT_Outline_ConicTo_Func)gray_conic_to, + (FT_Outline_CubicTo_Func)gray_cubic_to, + 0, + 0 + }; + + volatile int error = 0; + + if ( setjmp( ras.jump_buffer ) == 0 ) + { + error = FT_Outline_Decompose( &ras.outline, &interface, &ras ); + gray_record_cell( RAS_VAR ); + } + else + { + error = ErrRaster_MemoryOverflow; + } + + return error; + } + + + static int + gray_convert_glyph( RAS_ARG ) + { + TBand bands[40], *band; + int n, num_bands; + TPos min, max, max_y; + FT_BBox* clip; + + + /* Set up state in the raster object */ + gray_compute_cbox( RAS_VAR ); + + /* clip to target bitmap, exit if nothing to do */ + clip = &ras.clip_box; + + if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax || + ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax ) + return 0; + + if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin; + if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin; + + if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax; + if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax; + + /* simple heuristic used to speed-up the bezier decomposition -- see */ + /* the code in gray_render_conic() and gray_render_cubic() for more */ + /* details */ + ras.conic_level = 32; + ras.cubic_level = 16; + + { + int level = 0; + + + if ( ras.max_ex > 24 || ras.max_ey > 24 ) + level++; + if ( ras.max_ex > 120 || ras.max_ey > 120 ) + level++; + + ras.conic_level <<= level; + ras.cubic_level <<= level; + } + + /* setup vertical bands */ + num_bands = ( ras.max_ey - ras.min_ey ) / ras.band_size; + if ( num_bands == 0 ) num_bands = 1; + if ( num_bands >= 39 ) num_bands = 39; + + ras.band_shoot = 0; + + min = ras.min_ey; + max_y = ras.max_ey; + + for ( n = 0; n < num_bands; n++, min = max ) + { + max = min + ras.band_size; + if ( n == num_bands - 1 || max > max_y ) + max = max_y; + + bands[0].min = min; + bands[0].max = max; + band = bands; + + while ( band >= bands ) + { + FT_Pos bottom, top, middle; + int error; + + + ras.num_cells = 0; + ras.invalid = 1; + ras.min_ey = band->min; + ras.max_ey = band->max; + +#if 1 + error = gray_convert_glyph_inner( RAS_VAR ); +#else + error = FT_Outline_Decompose( outline, &interface, &ras ) || + gray_record_cell( RAS_VAR ); +#endif + + if ( !error ) + { +#ifdef SHELL_SORT + gray_shell_sort( ras.cells, ras.num_cells ); +#else + gray_quick_sort( ras.cells, ras.num_cells ); +#endif + +#ifdef DEBUG_GRAYS + gray_check_sort( ras.cells, ras.num_cells ); + gray_dump_cells( RAS_VAR ); +#endif + + gray_sweep( RAS_VAR_ &ras.target ); + band--; + continue; + } + else if ( error != ErrRaster_MemoryOverflow ) + return 1; + + /* render pool overflow, we will reduce the render band by half */ + bottom = band->min; + top = band->max; + middle = bottom + ( ( top - bottom ) >> 1 ); + + /* waoow! This is too complex for a single scanline, something */ + /* must be really rotten here! */ + if ( middle == bottom ) + { +#ifdef DEBUG_GRAYS + fprintf( stderr, "Rotten glyph!\n" ); +#endif + return 1; + } + + if ( bottom-top >= ras.band_size ) + ras.band_shoot++; + + band[1].min = bottom; + band[1].max = middle; + band[0].min = middle; + band[0].max = top; + band++; + } + } + + if ( ras.band_shoot > 8 && ras.band_size > 16 ) + ras.band_size = ras.band_size / 2; + + return 0; + } + + + extern int + gray_raster_render( PRaster raster, + FT_Raster_Params* params ) + { + FT_Outline* outline = (FT_Outline*)params->source; + FT_Bitmap* target_map = params->target; + + + if ( !raster || !raster->cells || !raster->max_cells ) + return -1; + + /* return immediately if the outline is empty */ + if ( outline->n_points == 0 || outline->n_contours <= 0 ) + return 0; + + if ( !outline || !outline->contours || !outline->points ) + return ErrRaster_Invalid_Outline; + + if ( outline->n_points != + outline->contours[outline->n_contours - 1] + 1 ) + return ErrRaster_Invalid_Outline; + + /* if direct mode is not set, we must have a target bitmap */ + if ( ( params->flags & ft_raster_flag_direct ) == 0 && + ( !target_map || !target_map->buffer ) ) + return -1; + + /* this version does not support monochrome rendering */ + if ( !( params->flags & ft_raster_flag_aa ) ) + return ErrRaster_Invalid_Mode; + + /* compute clipping box */ + if ( ( params->flags & ft_raster_flag_direct ) == 0 ) + { + /* compute clip box from target pixmap */ + ras.clip_box.xMin = 0; + ras.clip_box.yMin = 0; + ras.clip_box.xMax = target_map->width; + ras.clip_box.yMax = target_map->rows; + } + else if ( params->flags & ft_raster_flag_clip ) + { + ras.clip_box = params->clip_box; + } + else + { + ras.clip_box.xMin = -32768L; + ras.clip_box.yMin = -32768L; + ras.clip_box.xMax = 32767L; + ras.clip_box.yMax = 32767L; + } + + ras.outline = *outline; + ras.num_cells = 0; + ras.invalid = 1; + + if ( target_map ) + ras.target = *target_map; + + ras.render_span = (FT_Raster_Span_Func)gray_render_span; + ras.render_span_data = &ras; + + if ( params->flags & ft_raster_flag_direct ) + { + ras.render_span = (FT_Raster_Span_Func)params->gray_spans; + ras.render_span_data = params->user; + } + + return gray_convert_glyph( (PRaster)raster ); + } + + + /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ + /**** a static object. *****/ + +#ifdef _STANDALONE_ + + static int + gray_raster_new( void* memory, + FT_Raster* araster ) + { + static TRaster the_raster; + + FT_UNUSED( memory ); + + + *araster = (FT_Raster)&the_raster; + memset( &the_raster, 0, sizeof ( the_raster ) ); + + return 0; + } + + + static void + gray_raster_done( FT_Raster raster ) + { + /* nothing */ + FT_UNUSED( raster ); + } + +#else /* _STANDALONE_ */ + + static int + gray_raster_new( FT_Memory memory, + FT_Raster* araster ) + { + FT_Error error; + PRaster raster; + + + *araster = 0; + if ( !ALLOC( raster, sizeof ( TRaster ) ) ) + { + raster->memory = memory; + *araster = (FT_Raster)raster; + } + + return error; + } + + + static void + gray_raster_done( FT_Raster raster ) + { + FT_Memory memory = (FT_Memory)((PRaster)raster)->memory; + + + FREE( raster ); + } + +#endif /* _STANDALONE_ */ + + + static void + gray_raster_reset( FT_Raster raster, + const char* pool_base, + long pool_size ) + { + PRaster rast = (PRaster)raster; + + + if ( raster && pool_base && pool_size >= 4096 ) + gray_init_cells( rast, (char*)pool_base, pool_size ); + + rast->band_size = ( pool_size / sizeof ( TCell ) ) / 8; + } + + + const FT_Raster_Funcs ft_grays_raster = + { + ft_glyph_format_outline, + + (FT_Raster_New_Func) gray_raster_new, + (FT_Raster_Reset_Func) gray_raster_reset, + (FT_Raster_Set_Mode_Func) 0, + (FT_Raster_Render_Func) gray_raster_render, + (FT_Raster_Done_Func) gray_raster_done + }; + + +/* END */