reset rrd_state for grapv in ruby bindings -- Sven Engelhardt
[rrdtool.git] / doc / bin_dec_hex.pod
1 =head1 NAME
2
3 bin_dec_hex - How to use binary, decimal, and hexadecimal notation.
4
5 =head1 DESCRIPTION
6
7 Most people use the decimal numbering system. This system uses ten
8 symbols to represent numbers. When those ten symbols are used up, they
9 start all over again and increment the position to the left. The
10 digit 0 is only shown if it is the only symbol in the sequence, or if
11 it is not the first one.
12
13 If this sounds cryptic to you, this is what I've just said in numbers:
14
15      0
16      1
17      2
18      3
19      4
20      5
21      6
22      7
23      8
24      9
25     10
26     11
27     12
28     13
29
30 and so on.
31
32 Each time the digit nine is incremented, it is reset to 0 and the
33 position before (to the left) is incremented (from 0 to 1). Then
34 number 9 can be seen as "00009" and when we should increment 9, we
35 reset it to zero and increment the digit just before the 9 so the
36 number becomes "00010". Leading zeros we don't write except if it is
37 the only digit (number 0). And of course, we write zeros if they occur
38 anywhere inside or at the end of a number:
39
40  "00010" -> " 0010" -> " 010" -> "  10", but not "  1 ".
41
42 This was pretty basic, you already knew this. Why did I tell it?
43 Well, computers usually do not represent numbers with 10 different
44 digits. They only use two different symbols, namely "0" and "1". Apply
45 the same rules to this set of digits and you get the binary numbering
46 system:
47
48      0
49      1
50     10
51     11
52    100
53    101
54    110
55    111
56   1000
57   1001
58   1010
59   1011
60   1100
61   1101
62
63 and so on.
64
65 If you count the number of rows, you'll see that these are again 14
66 different numbers. The numbers are the same and mean the same as in
67 the first list, we just used a different representation. This means
68 that you have to know the representation used, or as it is called the
69 numbering system or base.  Normally, if we do not explicitly specify
70 the numbering system used, we implicitly use the decimal system. If we
71 want to use any other numbering system, we'll have to make that
72 clear. There are a few widely adopted methods to do so. One common
73 form is to write 1010(2) which means that you wrote down a number in
74 its binary representation. It is the number ten. If you would write
75 1010 without specifying the base, the number is interpreted as one
76 thousand and ten using base 10.
77
78 In books, another form is common. It uses subscripts (little
79 characters, more or less in between two rows). You can leave out the
80 parentheses in that case and write down the number in normal
81 characters followed by a little two just behind it.
82
83 As the numbering system used is also called the base, we talk of the
84 number 1100 base 2, the number 12 base 10.
85
86 Within the binary system, it is common to write leading zeros. The
87 numbers are written down in series of four, eight or sixteen depending
88 on the context.
89
90 We can use the binary form when talking to computers
91 (...programming...), but the numbers will have large
92 representations. The number 65'535 (often in the decimal system a ' is
93 used to separate blocks of three digits for readability) would be
94 written down as 1111111111111111(2) which is 16 times the digit 1.
95 This is difficult and prone to errors. Therefore, we usually would use
96 another base, called hexadecimal. It uses 16 different symbols. First
97 the symbols from the decimal system are used, thereafter we continue
98 with alphabetic characters. We get 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
99 A, B, C, D, E and F. This system is chosen because the hexadecimal
100 form can be converted into the binary system very easily (and back).
101
102 There is yet another system in use, called the octal system. This was
103 more common in the old days, but is not used very often anymore. As
104 you might find it in use sometimes, you should get used to it and
105 we'll show it below. It's the same story as with the other
106 representations, but with eight different symbols.
107
108  Binary      (2)
109  Octal       (8)
110  Decimal     (10)
111  Hexadecimal (16)
112
113  (2)    (8) (10) (16)
114  00000   0    0    0
115  00001   1    1    1
116  00010   2    2    2
117  00011   3    3    3
118  00100   4    4    4
119  00101   5    5    5
120  00110   6    6    6
121  00111   7    7    7
122  01000  10    8    8
123  01001  11    9    9
124  01010  12   10    A
125  01011  13   11    B
126  01100  14   12    C
127  01101  15   13    D
128  01110  16   14    E
129  01111  17   15    F
130  10000  20   16   10
131  10001  21   17   11
132  10010  22   18   12
133  10011  23   19   13
134  10100  24   20   14
135  10101  25   21   15
136
137 Most computers used nowadays are using bytes of eight bits. This means
138 that they store eight bits at a time. You can see why the octal system
139 is not the most practical for that: You'd need three digits to represent
140 the eight bits and this means that you'd have to use one complete digit
141 to represent only two bits (2+3+3=8). This is a waste. For hexadecimal
142 digits, you need only two digits which are used completely:
143
144  (2)      (8)  (10) (16)
145  11111111 377  255   FF
146
147 You can see why binary and hexadecimal can be converted quickly: For
148 each hexadecimal digit there are exactly four binary digits.  Take a
149 binary number: take four digits from the right and make a hexadecimal
150 digit from it (see the table above). Repeat this until there are no
151 more digits. And the other way around: Take a hexadecimal number. For
152 each digit, write down its binary equivalent.
153
154 Computers (or rather the parsers running on them) would have a hard
155 time converting a number like 1234(16). Therefore hexadecimal numbers
156 are specified with a prefix. This prefix depends on the language
157 you're writing in. Some of the prefixes are "0x" for C, "$" for
158 Pascal, "#" for HTML.  It is common to assume that if a number starts
159 with a zero, it is octal. It does not matter what is used as long as
160 you know what it is. I will use "0x" for hexadecimal, "%" for binary
161 and "0" for octal.  The following numbers are all the same, just their
162 representation (base) is different: 021 0x11 17 %00010001
163
164 To do arithmetics and conversions you need to understand one more thing.
165 It is something you already know but perhaps you do not "see" it yet:
166
167 If you write down 1234, (no prefix, so it is decimal) you are talking
168 about the number one thousand, two hundred and thirty four. In sort of
169 a formula:
170
171  1 * 1000 = 1000
172  2 *  100 =  200
173  3 *   10 =   30
174  4 *    1 =    4
175
176 This can also be written as:
177
178  1 * 10^3
179  2 * 10^2
180  3 * 10^1
181  4 * 10^0
182
183 where ^ means "to the power of".
184
185 We are using the base 10, and the positions 0,1,2 and 3.
186 The right-most position should NOT be multiplied with 10. The second
187 from the right should be multiplied one time with 10. The third from
188 the right is multiplied with 10 two times. This continues for whatever
189 positions are used.
190
191 It is the same in all other representations:
192
193 0x1234 will be
194
195  1 * 16^3
196  2 * 16^2
197  3 * 16^1
198  4 * 16^0
199
200 01234 would be
201
202  1 * 8^3
203  2 * 8^2
204  3 * 8^1
205  4 * 8^0
206
207 This example can not be done for binary as that system only uses two
208 symbols. Another example:
209
210 %1010 would be
211
212  1 * 2^3
213  0 * 2^2
214  1 * 2^1
215  0 * 2^0
216
217 It would have been easier to convert it to its hexadecimal form and
218 just translate %1010 into 0xA. After a while you get used to it. You will
219 not need to do any calculations anymore, but just know that 0xA means 10.
220
221 To convert a decimal number into a hexadecimal you could use the next
222 method. It will take some time to be able to do the estimates, but it
223 will be easier when you use the system more frequently. We'll look at
224 yet another way afterwards.
225
226 First you need to know how many positions will be used in the other
227 system. To do so, you need to know the maximum numbers you'll be
228 using. Well, that's not as hard as it looks. In decimal, the maximum
229 number that you can form with two digits is "99". The maximum for
230 three: "999". The next number would need an extra position. Reverse
231 this idea and you will see that the number can be found by taking 10^3
232 (10*10*10 is 1000) minus 1 or 10^2 minus one.
233
234 This can be done for hexadecimal as well:
235
236  16^4 = 0x10000 = 65536
237  16^3 =  0x1000 =  4096
238  16^2 =   0x100 =   256
239  16^1 =    0x10 =    16
240
241 If a number is smaller than 65'536 it will fit in four positions.
242 If the number is bigger than 4'095, you must use position 4.
243 How many times you can subtract 4'096 from the number without going below
244 zero is the first digit you write down. This will always be a number
245 from 1 to 15 (0x1 to 0xF). Do the same for the other positions.
246
247 Let's try with 41'029. It is smaller than 16^4 but bigger than 16^3-1. This
248 means that we have to use four positions.
249 We can subtract 16^3 from 41'029 ten times without going below zero.
250 The left-most digit will therefore be "A", so we have 0xA????.
251 The number is reduced to 41'029 - 10*4'096 = 41'029-40'960 = 69.
252 69 is smaller than 16^3 but not bigger than 16^2-1. The second digit
253 is therefore "0" and we now have 0xA0??.
254 69 is smaller than 16^2 and bigger than 16^1-1. We can subtract 16^1
255 (which is just plain 16) four times and write down "4" to get 0xA04?.
256 Subtract 64 from 69 (69 - 4*16) and the last digit is 5 --> 0xA045.
257
258 The other method builds up the number from the right. Let's try 41'029
259 again.  Divide by 16 and do not use fractions (only whole numbers).
260
261  41'029 / 16 is 2'564 with a remainder of 5. Write down 5.
262  2'564 / 16 is 160 with a remainder of 4. Write the 4 before the 5.
263  160 / 16 is 10 with no remainder. Prepend 45 with 0.
264  10 / 16 is below one. End here and prepend 0xA. End up with 0xA045.
265
266 Which method to use is up to you. Use whatever works for you.  I use
267 them both without being able to tell what method I use in each case,
268 it just depends on the number, I think. Fact is, some numbers will
269 occur frequently while programming. If the number is close to one I am
270 familiar with, then I will use the first method (like 32'770 which is
271 into 32'768 + 2 and I just know that it is 0x8000 + 0x2 = 0x8002).
272
273 For binary the same approach can be used. The base is 2 and not 16,
274 and the number of positions will grow rapidly. Using the second method
275 has the advantage that you can see very easily if you should write down
276 a zero or a one: if you divide by two the remainder will be zero if it
277 is an even number and one if it is an odd number:
278
279  41029 / 2 = 20514 remainder 1
280  20514 / 2 = 10257 remainder 0
281  10257 / 2 =  5128 remainder 1
282   5128 / 2 =  2564 remainder 0
283   2564 / 2 =  1282 remainder 0
284   1282 / 2 =   641 remainder 0
285    641 / 2 =   320 remainder 1
286    320 / 2 =   160 remainder 0
287    160 / 2 =    80 remainder 0
288     80 / 2 =    40 remainder 0
289     40 / 2 =    20 remainder 0
290     20 / 2 =    10 remainder 0
291     10 / 2 =     5 remainder 0
292      5 / 2 =     2 remainder 1
293      2 / 2 =     1 remainder 0
294      1 / 2 below 0 remainder 1
295
296 Write down the results from right to left: %1010000001000101
297
298 Group by four:
299
300  %1010000001000101
301  %101000000100 0101
302  %10100000 0100 0101
303  %1010 0000 0100 0101
304
305 Convert into hexadecimal: 0xA045
306
307 Group %1010000001000101 by three and convert into octal:
308
309  %1010000001000101
310  %1010000001000 101
311  %1010000001 000 101
312  %1010000 001 000 101
313  %1010 000 001 000 101
314  %1 010 000 001 000 101
315  %001 010 000 001 000 101
316     1   2   0   1   0   5 --> 0120105
317
318  So: %1010000001000101 = 0120105 = 0xA045 = 41029
319  Or: 1010000001000101(2) = 120105(8) = A045(16) = 41029(10)
320  Or: 1010000001000101(2) = 120105(8) = A045(16) = 41029
321
322
323 At first while adding numbers, you'll convert them to their decimal
324 form and then back into their original form after doing the addition.
325 If you use the other numbering system often, you will see that you'll
326 be able to do arithmetics directly in the base that is used.
327 In any representation it is the same, add the numbers on the right,
328 write down the right-most digit from the result, remember the other
329 digits and use them in the next round. Continue with the second digit
330 from the right and so on:
331
332     %1010 + %0111 --> 10 + 7 --> 17 --> %00010001
333
334 will become
335
336     %1010
337     %0111 +
338      ||||
339      |||+-- add 0 + 1, result is 1, nothing to remember
340      ||+--- add 1 + 1, result is %10, write down 0 and remember 1
341      |+---- add 0 + 1 + 1(remembered), result = 0, remember 1
342      +----- add 1 + 0 + 1(remembered), result = 0, remember 1
343             nothing to add, 1 remembered, result = 1
344  --------
345    %10001 is the result, I like to write it as %00010001
346
347 For low values, try to do the calculations yourself, then check them with
348 a calculator. The more you do the calculations yourself, the more you'll
349 find that you didn't make mistakes. In the end, you'll do calculi in
350 other bases as easily as you do them in decimal.
351
352 When the numbers get bigger, you'll have to realize that a computer is
353 not called a computer just to have a nice name. There are many
354 different calculators available, use them. For Unix you could use "bc"
355 which is short for Binary Calculator. It calculates not only in
356 decimal, but in all bases you'll ever want to use (among them Binary).
357
358 For people on Windows:
359 Start the calculator (start->programs->accessories->calculator)
360 and if necessary click view->scientific. You now have a scientific
361 calculator and can compute in binary or hexadecimal.
362
363 =head1 AUTHOR
364
365 I hope you enjoyed the examples and their descriptions. If you do, help
366 other people by pointing them to this document when they are asking
367 basic questions. They will not only get their answer, but at the same
368 time learn a whole lot more.
369
370 Alex van den Bogaerdt  E<lt>alex@vandenbogaerdt.nlE<gt>