added --no-overwrite option to rrdtool create. It prevents rrdtool from clobbering...
[rrdtool.git] / doc / rrdcreate.pod
1 =head1 NAME
2
3 rrdcreate - Set up a new Round Robin Database
4
5 =head1 SYNOPSIS
6
7 B<rrdtool> B<create> I<filename>
8 S<[B<--start>|B<-b> I<start time>]>
9 S<[B<--step>|B<-s> I<step>]>
10 S<[B<--no-overwrite>]>
11 S<[B<DS:>I<ds-name>B<:>I<DST>B<:>I<dst arguments>]>
12 S<[B<RRA:>I<CF>B<:>I<cf arguments>]>
13
14 =head1 DESCRIPTION
15
16 The create function of RRDtool lets you set up new Round Robin
17 Database (B<RRD>) files.  The file is created at its final, full size
18 and filled with I<*UNKNOWN*> data.
19
20 =head2 I<filename>
21
22 The name of the B<RRD> you want to create. B<RRD> files should end
23 with the extension F<.rrd>. However, B<RRDtool> will accept any
24 filename.
25
26 =head2 B<--start>|B<-b> I<start time> (default: now - 10s)
27
28 Specifies the time in seconds since 1970-01-01 UTC when the first
29 value should be added to the B<RRD>. B<RRDtool> will not accept
30 any data timed before or at the time specified.
31
32 See also AT-STYLE TIME SPECIFICATION section in the
33 I<rrdfetch> documentation for other ways to specify time.
34
35 =head2 B<--step>|B<-s> I<step> (default: 300 seconds)
36
37 Specifies the base interval in seconds with which data will be fed
38 into the B<RRD>.
39
40 =head2 B<--no-overwrite>
41
42 Do not clobber an existing file of the same name.
43
44 =head2 B<DS:>I<ds-name>B<:>I<DST>B<:>I<dst arguments>
45
46 A single B<RRD> can accept input from several data sources (B<DS>),
47 for example incoming and outgoing traffic on a specific communication
48 line. With the B<DS> configuration option you must define some basic
49 properties of each data source you want to store in the B<RRD>.
50
51 I<ds-name> is the name you will use to reference this particular data
52 source from an B<RRD>. A I<ds-name> must be 1 to 19 characters long in
53 the characters [a-zA-Z0-9_].
54
55 I<DST> defines the Data Source Type. The remaining arguments of a
56 data source entry depend on the data source type. For GAUGE, COUNTER,
57 DERIVE, and ABSOLUTE the format for a data source entry is:
58
59 B<DS:>I<ds-name>B<:>I<GAUGE | COUNTER | DERIVE | ABSOLUTE>B<:>I<heartbeat>B<:>I<min>B<:>I<max>
60
61 For COMPUTE data sources, the format is:
62
63 B<DS:>I<ds-name>B<:>I<COMPUTE>B<:>I<rpn-expression>
64
65 In order to decide which data source type to use, review the
66 definitions that follow. Also consult the section on "HOW TO MEASURE"
67 for further insight.
68
69 =over
70
71 =item B<GAUGE>
72
73 is for things like temperatures or number of people in a room or the
74 value of a RedHat share.
75
76 =item B<COUNTER>
77
78 is for continuous incrementing counters like the ifInOctets counter in
79 a router. The B<COUNTER> data source assumes that the counter never
80 decreases, except when a counter overflows.  The update function takes
81 the overflow into account.  The counter is stored as a per-second
82 rate. When the counter overflows, RRDtool checks if the overflow
83 happened at the 32bit or 64bit border and acts accordingly by adding
84 an appropriate value to the result.
85
86 =item B<DERIVE>
87
88 will store the derivative of the line going from the last to the
89 current value of the data source. This can be useful for gauges, for
90 example, to measure the rate of people entering or leaving a
91 room. Internally, derive works exactly like COUNTER but without
92 overflow checks. So if your counter does not reset at 32 or 64 bit you
93 might want to use DERIVE and combine it with a MIN value of 0.
94
95 B<NOTE on COUNTER vs DERIVE>
96
97 by Don Baarda E<lt>don.baarda@baesystems.comE<gt>
98
99 If you cannot tolerate ever mistaking the occasional counter reset for a
100 legitimate counter wrap, and would prefer "Unknowns" for all legitimate
101 counter wraps and resets, always use DERIVE with min=0. Otherwise, using
102 COUNTER with a suitable max will return correct values for all legitimate
103 counter wraps, mark some counter resets as "Unknown", but can mistake some
104 counter resets for a legitimate counter wrap.
105
106 For a 5 minute step and 32-bit counter, the probability of mistaking a
107 counter reset for a legitimate wrap is arguably about 0.8% per 1Mbps of
108 maximum bandwidth. Note that this equates to 80% for 100Mbps interfaces, so
109 for high bandwidth interfaces and a 32bit counter, DERIVE with min=0 is
110 probably preferable. If you are using a 64bit counter, just about any max
111 setting will eliminate the possibility of mistaking a reset for a counter
112 wrap.
113
114 =item B<ABSOLUTE>
115
116 is for counters which get reset upon reading. This is used for fast counters
117 which tend to overflow. So instead of reading them normally you reset them
118 after every read to make sure you have a maximum time available before the
119 next overflow. Another usage is for things you count like number of messages
120 since the last update.
121
122 =item B<COMPUTE>
123
124 is for storing the result of a formula applied to other data sources
125 in the B<RRD>. This data source is not supplied a value on update, but
126 rather its Primary Data Points (PDPs) are computed from the PDPs of
127 the data sources according to the rpn-expression that defines the
128 formula. Consolidation functions are then applied normally to the PDPs
129 of the COMPUTE data source (that is the rpn-expression is only applied
130 to generate PDPs). In database software, such data sets are referred
131 to as "virtual" or "computed" columns.
132
133 =back
134
135 I<heartbeat> defines the maximum number of seconds that may pass
136 between two updates of this data source before the value of the
137 data source is assumed to be I<*UNKNOWN*>.
138
139 I<min> and I<max> define the expected range values for data supplied by a
140 data source. If I<min> and/or I<max> any value outside the defined range
141 will be regarded as I<*UNKNOWN*>. If you do not know or care about min and
142 max, set them to U for unknown. Note that min and max always refer to the
143 processed values of the DS. For a traffic-B<COUNTER> type DS this would be
144 the maximum and minimum data-rate expected from the device.
145
146 I<If information on minimal/maximal expected values is available,
147 always set the min and/or max properties. This will help RRDtool in
148 doing a simple sanity check on the data supplied when running update.>
149
150 I<rpn-expression> defines the formula used to compute the PDPs of a
151 COMPUTE data source from other data sources in the same <RRD>. It is
152 similar to defining a B<CDEF> argument for the graph command. Please
153 refer to that manual page for a list and description of RPN operations
154 supported. For COMPUTE data sources, the following RPN operations are
155 not supported: COUNT, PREV, TIME, and LTIME. In addition, in defining
156 the RPN expression, the COMPUTE data source may only refer to the
157 names of data source listed previously in the create command. This is
158 similar to the restriction that B<CDEF>s must refer only to B<DEF>s
159 and B<CDEF>s previously defined in the same graph command.
160
161 =head2 B<RRA:>I<CF>B<:>I<cf arguments>
162
163 The purpose of an B<RRD> is to store data in the round robin archives
164 (B<RRA>). An archive consists of a number of data values or statistics for
165 each of the defined data-sources (B<DS>) and is defined with an B<RRA> line.
166
167 When data is entered into an B<RRD>, it is first fit into time slots
168 of the length defined with the B<-s> option, thus becoming a I<primary
169 data point>.
170
171 The data is also processed with the consolidation function (I<CF>) of
172 the archive. There are several consolidation functions that
173 consolidate primary data points via an aggregate function: B<AVERAGE>,
174 B<MIN>, B<MAX>, B<LAST>. 
175
176 =over
177
178 =item AVERAGE
179
180 the average of the data points is stored.
181
182 =item MIN
183
184 the smallest of the data points is stored.
185
186 =item MAX
187
188 the largest of the data points is stored.
189
190 =item LAST
191
192 the last data points is used.
193
194 =back
195
196 Note that data aggregation inevitably leads to loss of precision and
197 information. The trick is to pick the aggregate function such that the
198 I<interesting> properties of your data is kept across the aggregation
199 process.
200
201
202 The format of B<RRA> line for these
203 consolidation functions is:
204
205 B<RRA:>I<AVERAGE | MIN | MAX | LAST>B<:>I<xff>B<:>I<steps>B<:>I<rows>
206
207 I<xff> The xfiles factor defines what part of a consolidation interval may
208 be made up from I<*UNKNOWN*> data while the consolidated value is still
209 regarded as known. It is given as the ratio of allowed I<*UNKNOWN*> PDPs
210 to the number of PDPs in the interval. Thus, it ranges from 0 to 1 (exclusive).
211
212
213 I<steps> defines how many of these I<primary data points> are used to build
214 a I<consolidated data point> which then goes into the archive.
215
216 I<rows> defines how many generations of data values are kept in an B<RRA>.
217 Obviously, this has to be greater than zero.
218
219 =head1 Aberrant Behavior Detection with Holt-Winters Forecasting
220
221 In addition to the aggregate functions, there are a set of specialized
222 functions that enable B<RRDtool> to provide data smoothing (via the
223 Holt-Winters forecasting algorithm), confidence bands, and the
224 flagging aberrant behavior in the data source time series:
225
226 =over
227
228 =item *
229
230 B<RRA:>I<HWPREDICT>B<:>I<rows>B<:>I<alpha>B<:>I<beta>B<:>I<seasonal period>[B<:>I<rra-num>]
231
232 =item *
233
234 B<RRA:>I<MHWPREDICT>B<:>I<rows>B<:>I<alpha>B<:>I<beta>B<:>I<seasonal period>[B<:>I<rra-num>]
235
236 =item *
237
238 B<RRA:>I<SEASONAL>B<:>I<seasonal period>B<:>I<gamma>B<:>I<rra-num>[B<:smoothing-window=>I<fraction>]
239
240 =item *
241
242 B<RRA:>I<DEVSEASONAL>B<:>I<seasonal period>B<:>I<gamma>B<:>I<rra-num>[B<:smoothing-window=>I<fraction>]
243
244 =item *
245
246 B<RRA:>I<DEVPREDICT>B<:>I<rows>B<:>I<rra-num>
247
248 =item *
249
250 B<RRA:>I<FAILURES>B<:>I<rows>B<:>I<threshold>B<:>I<window length>B<:>I<rra-num>
251
252 =back
253
254 These B<RRAs> differ from the true consolidation functions in several ways.
255 First, each of the B<RRA>s is updated once for every primary data point.
256 Second, these B<RRAs> are interdependent. To generate real-time confidence
257 bounds, a matched set of SEASONAL, DEVSEASONAL, DEVPREDICT, and either
258 HWPREDICT or MHWPREDICT must exist. Generating smoothed values of the primary
259 data points requires a SEASONAL B<RRA> and either an HWPREDICT or MHWPREDICT 
260 B<RRA>. Aberrant behavior detection requires FAILURES, DEVSEASONAL, SEASONAL,
261 and either HWPREDICT or MHWPREDICT.
262
263 The predicted, or smoothed, values are stored in the HWPREDICT or MHWPREDICT
264 B<RRA>. HWPREDICT and MHWPREDICT are actually two variations on the
265 Holt-Winters method. They are interchangeable. Both attempt to decompose data
266 into three components: a baseline, a trend, and a seasonal coefficient.
267 HWPREDICT adds its seasonal coefficient to the baseline to form a prediction, whereas
268 MHWPREDICT multiplies its seasonal coefficient by the baseline to form a
269 prediction. The difference is noticeable when the baseline changes
270 significantly in the course of a season; HWPREDICT will predict the seasonality
271 to stay constant as the baseline changes, but MHWPREDICT will predict the
272 seasonality to grow or shrink in proportion to the baseline. The proper choice
273 of method depends on the thing being modeled. For simplicity, the rest of this
274 discussion will refer to HWPREDICT, but MHWPREDICT may be substituted in its
275 place.
276
277 The predicted deviations are stored in DEVPREDICT (think a standard deviation
278 which can be scaled to yield a confidence band). The FAILURES B<RRA> stores 
279 binary indicators. A 1 marks the indexed observation as failure; that is, the 
280 number of confidence bounds violations in the preceding window of observations 
281 met or exceeded a specified threshold. An example of using these B<RRAs> to graph 
282 confidence bounds and failures appears in L<rrdgraph>.
283
284 The SEASONAL and DEVSEASONAL B<RRAs> store the seasonal coefficients for the
285 Holt-Winters forecasting algorithm and the seasonal deviations, respectively.
286 There is one entry per observation time point in the seasonal cycle. For
287 example, if primary data points are generated every five minutes and the
288 seasonal cycle is 1 day, both SEASONAL and DEVSEASONAL will have 288 rows.
289
290 In order to simplify the creation for the novice user, in addition to
291 supporting explicit creation of the HWPREDICT, SEASONAL, DEVPREDICT,
292 DEVSEASONAL, and FAILURES B<RRAs>, the B<RRDtool> create command supports
293 implicit creation of the other four when HWPREDICT is specified alone and
294 the final argument I<rra-num> is omitted.
295
296 I<rows> specifies the length of the B<RRA> prior to wrap around. Remember
297 that there is a one-to-one correspondence between primary data points and
298 entries in these RRAs. For the HWPREDICT CF, I<rows> should be larger than
299 the I<seasonal period>. If the DEVPREDICT B<RRA> is implicitly created, the
300 default number of rows is the same as the HWPREDICT I<rows> argument. If the
301 FAILURES B<RRA> is implicitly created, I<rows> will be set to the I<seasonal
302 period> argument of the HWPREDICT B<RRA>. Of course, the B<RRDtool>
303 I<resize> command is available if these defaults are not sufficient and the
304 creator wishes to avoid explicit creations of the other specialized function
305 B<RRAs>.
306
307 I<seasonal period> specifies the number of primary data points in a seasonal
308 cycle. If SEASONAL and DEVSEASONAL are implicitly created, this argument for
309 those B<RRAs> is set automatically to the value specified by HWPREDICT. If
310 they are explicitly created, the creator should verify that all three
311 I<seasonal period> arguments agree.
312
313 I<alpha> is the adaption parameter of the intercept (or baseline)
314 coefficient in the Holt-Winters forecasting algorithm. See L<rrdtool> for a
315 description of this algorithm. I<alpha> must lie between 0 and 1. A value
316 closer to 1 means that more recent observations carry greater weight in
317 predicting the baseline component of the forecast. A value closer to 0 means
318 that past history carries greater weight in predicting the baseline
319 component.
320
321 I<beta> is the adaption parameter of the slope (or linear trend) coefficient
322 in the Holt-Winters forecasting algorithm. I<beta> must lie between 0 and 1
323 and plays the same role as I<alpha> with respect to the predicted linear
324 trend.
325
326 I<gamma> is the adaption parameter of the seasonal coefficients in the
327 Holt-Winters forecasting algorithm (HWPREDICT) or the adaption parameter in
328 the exponential smoothing update of the seasonal deviations. It must lie
329 between 0 and 1. If the SEASONAL and DEVSEASONAL B<RRAs> are created
330 implicitly, they will both have the same value for I<gamma>: the value
331 specified for the HWPREDICT I<alpha> argument. Note that because there is
332 one seasonal coefficient (or deviation) for each time point during the
333 seasonal cycle, the adaptation rate is much slower than the baseline. Each
334 seasonal coefficient is only updated (or adapts) when the observed value
335 occurs at the offset in the seasonal cycle corresponding to that
336 coefficient.
337
338 If SEASONAL and DEVSEASONAL B<RRAs> are created explicitly, I<gamma> need not
339 be the same for both. Note that I<gamma> can also be changed via the
340 B<RRDtool> I<tune> command.
341
342 I<smoothing-window> specifies the fraction of a season that should be
343 averaged around each point. By default, the value of I<smoothing-window> is
344 0.05, which means each value in SEASONAL and DEVSEASONAL will be occasionally
345 replaced by averaging it with its (I<seasonal period>*0.05) nearest neighbors.
346 Setting I<smoothing-window> to zero will disable the running-average smoother
347 altogether.
348
349 I<rra-num> provides the links between related B<RRAs>. If HWPREDICT is
350 specified alone and the other B<RRAs> are created implicitly, then
351 there is no need to worry about this argument. If B<RRAs> are created
352 explicitly, then carefully pay attention to this argument. For each
353 B<RRA> which includes this argument, there is a dependency between
354 that B<RRA> and another B<RRA>. The I<rra-num> argument is the 1-based
355 index in the order of B<RRA> creation (that is, the order they appear
356 in the I<create> command). The dependent B<RRA> for each B<RRA>
357 requiring the I<rra-num> argument is listed here:
358
359 =over
360
361 =item *
362
363 HWPREDICT I<rra-num> is the index of the SEASONAL B<RRA>.
364
365 =item *
366
367 SEASONAL I<rra-num> is the index of the HWPREDICT B<RRA>.
368
369 =item *
370
371 DEVPREDICT I<rra-num> is the index of the DEVSEASONAL B<RRA>.
372
373 =item *
374
375 DEVSEASONAL I<rra-num> is the index of the HWPREDICT B<RRA>.
376
377 =item *
378
379 FAILURES I<rra-num> is the index of the DEVSEASONAL B<RRA>.
380
381 =back
382
383 I<threshold> is the minimum number of violations (observed values outside
384 the confidence bounds) within a window that constitutes a failure. If the
385 FAILURES B<RRA> is implicitly created, the default value is 7.
386
387 I<window length> is the number of time points in the window. Specify an
388 integer greater than or equal to the threshold and less than or equal to 28.
389 The time interval this window represents depends on the interval between
390 primary data points. If the FAILURES B<RRA> is implicitly created, the
391 default value is 9.
392
393 =head1 The HEARTBEAT and the STEP
394
395 Here is an explanation by Don Baarda on the inner workings of RRDtool.
396 It may help you to sort out why all this *UNKNOWN* data is popping
397 up in your databases:
398
399 RRDtool gets fed samples/updates at arbitrary times. From these it builds Primary
400 Data Points (PDPs) on every "step" interval. The PDPs are
401 then accumulated into the RRAs.
402
403 The "heartbeat" defines the maximum acceptable interval between
404 samples/updates. If the interval between samples is less than "heartbeat",
405 then an average rate is calculated and applied for that interval. If
406 the interval between samples is longer than "heartbeat", then that
407 entire interval is considered "unknown". Note that there are other
408 things that can make a sample interval "unknown", such as the rate
409 exceeding limits, or a sample that was explicitly marked as unknown.
410
411 The known rates during a PDP's "step" interval are used to calculate
412 an average rate for that PDP. If the total "unknown" time accounts for
413 more than B<half> the "step", the entire PDP is marked
414 as "unknown". This means that a mixture of known and "unknown" sample
415 times in a single PDP "step" may or may not add up to enough "known"
416 time to warrant a known PDP.
417
418 The "heartbeat" can be short (unusual) or long (typical) relative to
419 the "step" interval between PDPs. A short "heartbeat" means you
420 require multiple samples per PDP, and if you don't get them mark the
421 PDP unknown. A long heartbeat can span multiple "steps", which means
422 it is acceptable to have multiple PDPs calculated from a single
423 sample. An extreme example of this might be a "step" of 5 minutes and a
424 "heartbeat" of one day, in which case a single sample every day will
425 result in all the PDPs for that entire day period being set to the
426 same average rate. I<-- Don Baarda E<lt>don.baarda@baesystems.comE<gt>>
427
428        time|
429        axis|
430  begin__|00|
431         |01|
432        u|02|----* sample1, restart "hb"-timer
433        u|03|   /
434        u|04|  /
435        u|05| /
436        u|06|/     "hbt" expired
437        u|07|
438         |08|----* sample2, restart "hb" 
439         |09|   / 
440         |10|  /
441        u|11|----* sample3, restart "hb"
442        u|12|   /
443        u|13|  /
444  step1_u|14| /
445        u|15|/     "swt" expired
446        u|16|
447         |17|----* sample4, restart "hb", create "pdp" for step1 = 
448         |18|   /  = unknown due to 10 "u" labled secs > 0.5 * step
449         |19|  /
450         |20| /
451         |21|----* sample5, restart "hb"
452         |22|   /
453         |23|  /
454         |24|----* sample6, restart "hb"
455         |25|   /
456         |26|  /
457         |27|----* sample7, restart "hb"
458  step2__|28|   /
459         |22|  /
460         |23|----* sample8, restart "hb", create "pdp" for step1, create "cdp" 
461         |24|   /
462         |25|  /
463
464 graphics by I<vladimir.lavrov@desy.de>.
465
466
467 =head1 HOW TO MEASURE
468
469 Here are a few hints on how to measure:
470
471 =over
472
473
474 =item Temperature
475
476 Usually you have some type of meter you can read to get the temperature.
477 The temperature is not really connected with a time. The only connection is
478 that the temperature reading happened at a certain time. You can use the
479 B<GAUGE> data source type for this. RRDtool will then record your reading
480 together with the time.
481
482 =item Mail Messages
483
484 Assume you have a method to count the number of messages transported by
485 your mail server in a certain amount of time, giving you data like '5
486 messages in the last 65 seconds'. If you look at the count of 5 like an
487 B<ABSOLUTE> data type you can simply update the RRD with the number 5 and the
488 end time of your monitoring period. RRDtool will then record the number of
489 messages per second. If at some later stage you want to know the number of
490 messages transported in a day, you can get the average messages per second
491 from RRDtool for the day in question and multiply this number with the
492 number of seconds in a day. Because all math is run with Doubles, the
493 precision should be acceptable.
494
495 =item It's always a Rate
496
497 RRDtool stores rates in amount/second for COUNTER, DERIVE and ABSOLUTE
498 data.  When you plot the data, you will get on the y axis
499 amount/second which you might be tempted to convert to an absolute
500 amount by multiplying by the delta-time between the points. RRDtool
501 plots continuous data, and as such is not appropriate for plotting
502 absolute amounts as for example "total bytes" sent and received in a
503 router. What you probably want is plot rates that you can scale to
504 bytes/hour, for example, or plot absolute amounts with another tool
505 that draws bar-plots, where the delta-time is clear on the plot for
506 each point (such that when you read the graph you see for example GB
507 on the y axis, days on the x axis and one bar for each day).
508
509 =back
510
511
512 =head1 EXAMPLE
513
514  rrdtool create temperature.rrd --step 300 \
515   DS:temp:GAUGE:600:-273:5000 \
516   RRA:AVERAGE:0.5:1:1200 \
517   RRA:MIN:0.5:12:2400 \
518   RRA:MAX:0.5:12:2400 \
519   RRA:AVERAGE:0.5:12:2400
520
521 This sets up an B<RRD> called F<temperature.rrd> which accepts one
522 temperature value every 300 seconds. If no new data is supplied for
523 more than 600 seconds, the temperature becomes I<*UNKNOWN*>.  The
524 minimum acceptable value is -273 and the maximum is 5'000.
525
526 A few archive areas are also defined. The first stores the
527 temperatures supplied for 100 hours (1'200 * 300 seconds = 100
528 hours). The second RRA stores the minimum temperature recorded over
529 every hour (12 * 300 seconds = 1 hour), for 100 days (2'400 hours). The
530 third and the fourth RRA's do the same for the maximum and
531 average temperature, respectively.
532
533 =head1 EXAMPLE 2
534
535  rrdtool create monitor.rrd --step 300        \
536    DS:ifOutOctets:COUNTER:1800:0:4294967295   \
537    RRA:AVERAGE:0.5:1:2016                     \
538    RRA:HWPREDICT:1440:0.1:0.0035:288
539
540 This example is a monitor of a router interface. The first B<RRA> tracks the
541 traffic flow in octets; the second B<RRA> generates the specialized
542 functions B<RRAs> for aberrant behavior detection. Note that the I<rra-num>
543 argument of HWPREDICT is missing, so the other B<RRAs> will implicitly be
544 created with default parameter values. In this example, the forecasting
545 algorithm baseline adapts quickly; in fact the most recent one hour of
546 observations (each at 5 minute intervals) accounts for 75% of the baseline
547 prediction. The linear trend forecast adapts much more slowly. Observations
548 made during the last day (at 288 observations per day) account for only
549 65% of the predicted linear trend. Note: these computations rely on an
550 exponential smoothing formula described in the LISA 2000 paper.
551
552 The seasonal cycle is one day (288 data points at 300 second intervals), and
553 the seasonal adaption parameter will be set to 0.1. The RRD file will store 5
554 days (1'440 data points) of forecasts and deviation predictions before wrap
555 around. The file will store 1 day (a seasonal cycle) of 0-1 indicators in
556 the FAILURES B<RRA>.
557
558 The same RRD file and B<RRAs> are created with the following command,
559 which explicitly creates all specialized function B<RRAs>.
560
561  rrdtool create monitor.rrd --step 300 \
562    DS:ifOutOctets:COUNTER:1800:0:4294967295 \
563    RRA:AVERAGE:0.5:1:2016 \
564    RRA:HWPREDICT:1440:0.1:0.0035:288:3 \
565    RRA:SEASONAL:288:0.1:2 \
566    RRA:DEVPREDICT:1440:5 \
567    RRA:DEVSEASONAL:288:0.1:2 \
568    RRA:FAILURES:288:7:9:5
569
570 Of course, explicit creation need not replicate implicit create, a
571 number of arguments could be changed.
572
573 =head1 EXAMPLE 3
574
575  rrdtool create proxy.rrd --step 300 \
576    DS:Total:DERIVE:1800:0:U  \
577    DS:Duration:DERIVE:1800:0:U  \
578    DS:AvgReqDur:COMPUTE:Duration,Requests,0,EQ,1,Requests,IF,/ \
579    RRA:AVERAGE:0.5:1:2016
580
581 This example is monitoring the average request duration during each 300 sec
582 interval for requests processed by a web proxy during the interval.
583 In this case, the proxy exposes two counters, the number of requests
584 processed since boot and the total cumulative duration of all processed
585 requests. Clearly these counters both have some rollover point, but using the
586 DERIVE data source also handles the reset that occurs when the web proxy is
587 stopped and restarted.
588
589 In the B<RRD>, the first data source stores the requests per second rate
590 during the interval. The second data source stores the total duration of all
591 requests processed during the interval divided by 300. The COMPUTE data source
592 divides each PDP of the AccumDuration by the corresponding PDP of
593 TotalRequests and stores the average request duration. The remainder of the
594 RPN expression handles the divide by zero case.
595
596 =head1 AUTHOR
597
598 Tobias Oetiker E<lt>tobi@oetiker.chE<gt>