X-Git-Url: https://git.octo.it/?p=rrdtool.git;a=blobdiff_plain;f=src%2Frrd_update.c;h=dbf74df6629611472e5c90af4f530ce36583f338;hp=a66f14e4121962eb7c61b504a81d3b72cdb6c620;hb=7cd3bc3512c11bb861490bb65553cea5cc0c98b4;hpb=090e0fb8a96794b83d075a56ddf6b19fdb4e7c45 diff --git a/src/rrd_update.c b/src/rrd_update.c index a66f14e..dbf74df 100644 --- a/src/rrd_update.c +++ b/src/rrd_update.c @@ -1,5 +1,6 @@ /***************************************************************************** - * RRDtool 1.2.15 Copyright by Tobi Oetiker, 1997-2006 + * RRDtool 1.4.3 Copyright by Tobi Oetiker, 1997-2010 + * Copyright by Florian Forster, 2008 ***************************************************************************** * rrd_update.c RRD Update Function ***************************************************************************** @@ -7,24 +8,23 @@ *****************************************************************************/ #include "rrd_tool.h" -#include -#include -#ifdef HAVE_MMAP - #include -#endif #if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__) - #include - #include - #include +#include +#include +#include #endif +#include + #include "rrd_hw.h" #include "rrd_rpncalc.h" #include "rrd_is_thread_safe.h" #include "unused.h" +#include "rrd_client.h" + #if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__) /* * WIN32 does not have gettimeofday and struct timeval. This is a quick and dirty @@ -34,1504 +34,2090 @@ #ifndef __MINGW32__ struct timeval { - time_t tv_sec; /* seconds */ - long tv_usec; /* microseconds */ + time_t tv_sec; /* seconds */ + long tv_usec; /* microseconds */ }; #endif struct __timezone { - int tz_minuteswest; /* minutes W of Greenwich */ - int tz_dsttime; /* type of dst correction */ + int tz_minuteswest; /* minutes W of Greenwich */ + int tz_dsttime; /* type of dst correction */ }; -static int gettimeofday(struct timeval *t, struct __timezone *tz) { +static int gettimeofday( + struct timeval *t, + struct __timezone *tz) +{ - struct _timeb current_time; + struct _timeb current_time; - _ftime(¤t_time); + _ftime(¤t_time); - t->tv_sec = current_time.time; - t->tv_usec = current_time.millitm * 1000; + t->tv_sec = current_time.time; + t->tv_usec = current_time.millitm * 1000; - return 0; + return 0; } #endif + +/* FUNCTION PROTOTYPES */ + +int rrd_update_r( + const char *filename, + const char *tmplt, + int argc, + const char **argv); +int _rrd_update( + const char *filename, + const char *tmplt, + int argc, + const char **argv, + rrd_info_t *); + +static int allocate_data_structures( + rrd_t *rrd, + char ***updvals, + rrd_value_t **pdp_temp, + const char *tmplt, + long **tmpl_idx, + unsigned long *tmpl_cnt, + unsigned long **rra_step_cnt, + unsigned long **skip_update, + rrd_value_t **pdp_new); + +static int parse_template( + rrd_t *rrd, + const char *tmplt, + unsigned long *tmpl_cnt, + long *tmpl_idx); + +static int process_arg( + char *step_start, + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin, + time_t *current_time, + unsigned long *current_time_usec, + rrd_value_t *pdp_temp, + rrd_value_t *pdp_new, + unsigned long *rra_step_cnt, + char **updvals, + long *tmpl_idx, + unsigned long tmpl_cnt, + rrd_info_t ** pcdp_summary, + int version, + unsigned long *skip_update, + int *schedule_smooth); + +static int parse_ds( + rrd_t *rrd, + char **updvals, + long *tmpl_idx, + char *input, + unsigned long tmpl_cnt, + time_t *current_time, + unsigned long *current_time_usec, + int version); + +static int get_time_from_reading( + rrd_t *rrd, + char timesyntax, + char **updvals, + time_t *current_time, + unsigned long *current_time_usec, + int version); + +static int update_pdp_prep( + rrd_t *rrd, + char **updvals, + rrd_value_t *pdp_new, + double interval); + +static int calculate_elapsed_steps( + rrd_t *rrd, + unsigned long current_time, + unsigned long current_time_usec, + double interval, + double *pre_int, + double *post_int, + unsigned long *proc_pdp_cnt); + +static void simple_update( + rrd_t *rrd, + double interval, + rrd_value_t *pdp_new); + +static int process_all_pdp_st( + rrd_t *rrd, + double interval, + double pre_int, + double post_int, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_new, + rrd_value_t *pdp_temp); + +static int process_pdp_st( + rrd_t *rrd, + unsigned long ds_idx, + double interval, + double pre_int, + double post_int, + long diff_pdp_st, + rrd_value_t *pdp_new, + rrd_value_t *pdp_temp); + +static int update_all_cdp_prep( + rrd_t *rrd, + unsigned long *rra_step_cnt, + unsigned long rra_begin, + rrd_file_t *rrd_file, + unsigned long elapsed_pdp_st, + unsigned long proc_pdp_cnt, + rrd_value_t **last_seasonal_coef, + rrd_value_t **seasonal_coef, + rrd_value_t *pdp_temp, + unsigned long *skip_update, + int *schedule_smooth); + +static int do_schedule_smooth( + rrd_t *rrd, + unsigned long rra_idx, + unsigned long elapsed_pdp_st); + +static int update_cdp_prep( + rrd_t *rrd, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long *rra_step_cnt, + int rra_idx, + rrd_value_t *pdp_temp, + rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int current_cf); + +static void update_cdp( + unival *scratch, + int current_cf, + rrd_value_t pdp_temp_val, + unsigned long rra_step_cnt, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt, + rrd_value_t xff, + int i, + int ii); + +static void initialize_cdp_val( + unival *scratch, + int current_cf, + rrd_value_t pdp_temp_val, + unsigned long start_pdp_offset, + unsigned long pdp_cnt); + +static void reset_cdp( + rrd_t *rrd, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, + rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int rra_idx, + int ds_idx, + int cdp_idx, + enum cf_en current_cf); + +static rrd_value_t initialize_carry_over( + rrd_value_t pdp_temp_val, + int current_cf, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt); + +static rrd_value_t calculate_cdp_val( + rrd_value_t cdp_val, + rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, + int current_cf, + int i, + int ii); + +static int update_aberrant_cdps( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, + rrd_value_t **seasonal_coef); + +static int write_to_rras( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long *rra_step_cnt, + unsigned long rra_begin, + time_t current_time, + unsigned long *skip_update, + rrd_info_t ** pcdp_summary); + +static int write_RRA_row( + rrd_file_t *rrd_file, + rrd_t *rrd, + unsigned long rra_idx, + unsigned short CDP_scratch_idx, + rrd_info_t ** pcdp_summary, + time_t rra_time); + +static int smooth_all_rras( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin); + +#ifndef HAVE_MMAP +static int write_changes_to_disk( + rrd_t *rrd, + rrd_file_t *rrd_file, + int version); +#endif + /* - * normilize time as returned by gettimeofday. usec part must + * normalize time as returned by gettimeofday. usec part must * be always >= 0 */ -static void normalize_time(struct timeval *t) +static void normalize_time( + struct timeval *t) { - if(t->tv_usec < 0) { - t->tv_sec--; - t->tv_usec += 1000000L; - } + if (t->tv_usec < 0) { + t->tv_sec--; + t->tv_usec += 1e6L; + } } -/* Local prototypes */ -int LockRRD(FILE *rrd_file); -#ifdef HAVE_MMAP -info_t *write_RRA_row (rrd_t *rrd, unsigned long rra_idx, - unsigned long *rra_current, - unsigned short CDP_scratch_idx, -#ifndef DEBUG -FILE UNUSED(*rrd_file), -#else -FILE *rrd_file, -#endif - info_t *pcdp_summary, time_t *rra_time, void *rrd_mmaped_file); -#else -info_t *write_RRA_row (rrd_t *rrd, unsigned long rra_idx, - unsigned long *rra_current, - unsigned short CDP_scratch_idx, FILE *rrd_file, - info_t *pcdp_summary, time_t *rra_time); -#endif -int rrd_update_r(char *filename, char *tmplt, int argc, char **argv); -int _rrd_update(char *filename, char *tmplt, int argc, char **argv, - info_t*); +/* + * Sets current_time and current_time_usec based on the current time. + * current_time_usec is set to 0 if the version number is 1 or 2. + */ +static void initialize_time( + time_t *current_time, + unsigned long *current_time_usec, + int version) +{ + struct timeval tmp_time; /* used for time conversion */ -#define IFDNAN(X,Y) (isnan(X) ? (Y) : (X)); + gettimeofday(&tmp_time, 0); + normalize_time(&tmp_time); + *current_time = tmp_time.tv_sec; + if (version >= 3) { + *current_time_usec = tmp_time.tv_usec; + } else { + *current_time_usec = 0; + } +} +#define IFDNAN(X,Y) (isnan(X) ? (Y) : (X)); -info_t *rrd_update_v(int argc, char **argv) +rrd_info_t *rrd_update_v( + int argc, + char **argv) { - char *tmplt = NULL; - info_t *result = NULL; - infoval rc; - rc.u_int = -1; - optind = 0; opterr = 0; /* initialize getopt */ + char *tmplt = NULL; + rrd_info_t *result = NULL; + rrd_infoval_t rc; + char *opt_daemon = NULL; + struct option long_options[] = { + {"template", required_argument, 0, 't'}, + {0, 0, 0, 0} + }; + + rc.u_int = -1; + optind = 0; + opterr = 0; /* initialize getopt */ while (1) { - static struct option long_options[] = - { - {"template", required_argument, 0, 't'}, - {0,0,0,0} - }; - int option_index = 0; - int opt; - opt = getopt_long(argc, argv, "t:", - long_options, &option_index); - - if (opt == EOF) - break; - - switch(opt) { - case 't': - tmplt = optarg; - break; - - case '?': - rrd_set_error("unknown option '%s'",argv[optind-1]); - goto end_tag; - } + int option_index = 0; + int opt; + + opt = getopt_long(argc, argv, "t:", long_options, &option_index); + + if (opt == EOF) + break; + + switch (opt) { + case 't': + tmplt = optarg; + break; + + case '?': + rrd_set_error("unknown option '%s'", argv[optind - 1]); + goto end_tag; + } + } + + opt_daemon = getenv (ENV_RRDCACHED_ADDRESS); + if (opt_daemon != NULL) { + rrd_set_error ("The \"%s\" environment variable is defined, " + "but \"%s\" cannot work with rrdcached. Either unset " + "the environment variable or use \"update\" instead.", + ENV_RRDCACHED_ADDRESS, argv[0]); + goto end_tag; } /* need at least 2 arguments: filename, data. */ - if (argc-optind < 2) { - rrd_set_error("Not enough arguments"); - goto end_tag; + if (argc - optind < 2) { + rrd_set_error("Not enough arguments"); + goto end_tag; } rc.u_int = 0; - result = info_push(NULL,sprintf_alloc("return_value"),RD_I_INT,rc); - rc.u_int = _rrd_update(argv[optind], tmplt, - argc - optind - 1, argv + optind + 1, result); + result = rrd_info_push(NULL, sprintf_alloc("return_value"), RD_I_INT, rc); + rc.u_int = _rrd_update(argv[optind], tmplt, + argc - optind - 1, + (const char **) (argv + optind + 1), result); result->value.u_int = rc.u_int; -end_tag: + end_tag: return result; } -int -rrd_update(int argc, char **argv) +int rrd_update( + int argc, + char **argv) { - char *tmplt = NULL; - int rc; - optind = 0; opterr = 0; /* initialize getopt */ + struct option long_options[] = { + {"template", required_argument, 0, 't'}, + {"daemon", required_argument, 0, 'd'}, + {0, 0, 0, 0} + }; + int option_index = 0; + int opt; + char *tmplt = NULL; + int rc = -1; + char *opt_daemon = NULL; + + optind = 0; + opterr = 0; /* initialize getopt */ while (1) { - static struct option long_options[] = - { - {"template", required_argument, 0, 't'}, - {0,0,0,0} - }; - int option_index = 0; - int opt; - opt = getopt_long(argc, argv, "t:", - long_options, &option_index); - - if (opt == EOF) - break; - - switch(opt) { - case 't': - tmplt = optarg; - break; - - case '?': - rrd_set_error("unknown option '%s'",argv[optind-1]); - return(-1); - } + opt = getopt_long(argc, argv, "t:d:", long_options, &option_index); + + if (opt == EOF) + break; + + switch (opt) { + case 't': + tmplt = strdup(optarg); + break; + + case 'd': + if (opt_daemon != NULL) + free (opt_daemon); + opt_daemon = strdup (optarg); + if (opt_daemon == NULL) + { + rrd_set_error("strdup failed."); + goto out; + } + break; + + case '?': + rrd_set_error("unknown option '%s'", argv[optind - 1]); + goto out; + } } /* need at least 2 arguments: filename, data. */ - if (argc-optind < 2) { - rrd_set_error("Not enough arguments"); + if (argc - optind < 2) { + rrd_set_error("Not enough arguments"); + goto out; + } - return -1; + { /* try to connect to rrdcached */ + int status = rrdc_connect(opt_daemon); + if (status != 0) { + rc = status; + goto out; + } + } + + if ((tmplt != NULL) && rrdc_is_connected(opt_daemon)) + { + rrd_set_error("The caching daemon cannot be used together with " + "templates yet."); + goto out; + } + + if (! rrdc_is_connected(opt_daemon)) + { + rc = rrd_update_r(argv[optind], tmplt, + argc - optind - 1, (const char **) (argv + optind + 1)); + } + else /* we are connected */ + { + rc = rrdc_update (argv[optind], /* file */ + argc - optind - 1, /* values_num */ + (const char *const *) (argv + optind + 1)); /* values */ + if (rc > 0) + rrd_set_error("Failed sending the values to rrdcached: %s", + rrd_strerror (rc)); + } + + out: + if (tmplt != NULL) + { + free(tmplt); + tmplt = NULL; + } + if (opt_daemon != NULL) + { + free (opt_daemon); + opt_daemon = NULL; } - - rc = rrd_update_r(argv[optind], tmplt, - argc - optind - 1, argv + optind + 1); return rc; } -int -rrd_update_r(char *filename, char *tmplt, int argc, char **argv) +int rrd_update_r( + const char *filename, + const char *tmplt, + int argc, + const char **argv) { - return _rrd_update(filename, tmplt, argc, argv, NULL); + return _rrd_update(filename, tmplt, argc, argv, NULL); } -int -_rrd_update(char *filename, char *tmplt, int argc, char **argv, - info_t *pcdp_summary) +int rrd_update_v_r( + const char *filename, + const char *tmplt, + int argc, + const char **argv, + rrd_info_t * pcdp_summary) { + return _rrd_update(filename, tmplt, argc, argv, pcdp_summary); +} - int arg_i = 2; - short j; - unsigned long i,ii,iii=1; - - unsigned long rra_begin; /* byte pointer to the rra - * area in the rrd file. this - * pointer never changes value */ - unsigned long rra_start; /* byte pointer to the rra - * area in the rrd file. this - * pointer changes as each rrd is - * processed. */ - unsigned long rra_current; /* byte pointer to the current write - * spot in the rrd file. */ - unsigned long rra_pos_tmp; /* temporary byte pointer. */ - double interval, - pre_int,post_int; /* interval between this and - * the last run */ - unsigned long proc_pdp_st; /* which pdp_st was the last - * to be processed */ - unsigned long occu_pdp_st; /* when was the pdp_st - * before the last update - * time */ - unsigned long proc_pdp_age; /* how old was the data in - * the pdp prep area when it - * was last updated */ - unsigned long occu_pdp_age; /* how long ago was the last - * pdp_step time */ - rrd_value_t *pdp_new; /* prepare the incoming data - * to be added the the - * existing entry */ - rrd_value_t *pdp_temp; /* prepare the pdp values - * to be added the the - * cdp values */ - - long *tmpl_idx; /* index representing the settings - transported by the tmplt index */ - unsigned long tmpl_cnt = 2; /* time and data */ - - FILE *rrd_file; - rrd_t rrd; - time_t current_time = 0; - time_t rra_time = 0; /* time of update for a RRA */ - unsigned long current_time_usec=0;/* microseconds part of current time */ - struct timeval tmp_time; /* used for time conversion */ - - char **updvals; - int schedule_smooth = 0; - rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL; - /* a vector of future Holt-Winters seasonal coefs */ - unsigned long elapsed_pdp_st; - /* number of elapsed PDP steps since last update */ - unsigned long *rra_step_cnt = NULL; - /* number of rows to be updated in an RRA for a data - * value. */ - unsigned long start_pdp_offset; - /* number of PDP steps since the last update that - * are assigned to the first CDP to be generated - * since the last update. */ - unsigned short scratch_idx; - /* index into the CDP scratch array */ - enum cf_en current_cf; - /* numeric id of the current consolidation function */ - rpnstack_t rpnstack; /* used for COMPUTE DS */ - int version; /* rrd version */ - char *endptr; /* used in the conversion */ -#ifdef HAVE_MMAP - void *rrd_mmaped_file; - unsigned long rrd_filesize; -#endif - +int _rrd_update( + const char *filename, + const char *tmplt, + int argc, + const char **argv, + rrd_info_t * pcdp_summary) +{ - rpnstack_init(&rpnstack); + int arg_i = 2; + + unsigned long rra_begin; /* byte pointer to the rra + * area in the rrd file. this + * pointer never changes value */ + rrd_value_t *pdp_new; /* prepare the incoming data to be added + * to the existing entry */ + rrd_value_t *pdp_temp; /* prepare the pdp values to be added + * to the cdp values */ + + long *tmpl_idx; /* index representing the settings + * transported by the tmplt index */ + unsigned long tmpl_cnt = 2; /* time and data */ + rrd_t rrd; + time_t current_time = 0; + unsigned long current_time_usec = 0; /* microseconds part of current time */ + char **updvals; + int schedule_smooth = 0; + + /* number of elapsed PDP steps since last update */ + unsigned long *rra_step_cnt = NULL; + + int version; /* rrd version */ + rrd_file_t *rrd_file; + char *arg_copy; /* for processing the argv */ + unsigned long *skip_update; /* RRAs to advance but not write */ /* need at least 1 arguments: data. */ if (argc < 1) { - rrd_set_error("Not enough arguments"); - return -1; + rrd_set_error("Not enough arguments"); + goto err_out; } - - - if(rrd_open(filename,&rrd_file,&rrd, RRD_READWRITE)==-1){ - return -1; + rrd_init(&rrd); + if ((rrd_file = rrd_open(filename, &rrd, RRD_READWRITE)) == NULL) { + goto err_free; } - /* initialize time */ + /* We are now at the beginning of the rra's */ + rra_begin = rrd_file->header_len; + version = atoi(rrd.stat_head->version); - gettimeofday(&tmp_time, 0); - normalize_time(&tmp_time); - current_time = tmp_time.tv_sec; - if(version >= 3) { - current_time_usec = tmp_time.tv_usec; - } - else { - current_time_usec = 0; - } - rra_current = rra_start = rra_begin = ftell(rrd_file); - /* This is defined in the ANSI C standard, section 7.9.5.3: - - When a file is opened with udpate mode ('+' as the second - or third character in the ... list of mode argument - variables), both input and ouptut may be performed on the - associated stream. However, ... input may not be directly - followed by output without an intervening call to a file - positioning function, unless the input oepration encounters - end-of-file. */ -#ifdef HAVE_MMAP - fseek(rrd_file, 0, SEEK_END); - rrd_filesize = ftell(rrd_file); - fseek(rrd_file, rra_current, SEEK_SET); -#else - fseek(rrd_file, 0, SEEK_CUR); -#endif + initialize_time(¤t_time, ¤t_time_usec, version); - /* get exclusive lock to whole file. * lock gets removed when we close the file. */ - if (LockRRD(rrd_file) != 0) { - rrd_set_error("could not lock RRD"); - rrd_free(&rrd); - fclose(rrd_file); - return(-1); - } + if (rrd_lock(rrd_file) != 0) { + rrd_set_error("could not lock RRD"); + goto err_close; + } + + if (allocate_data_structures(&rrd, &updvals, + &pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt, + &rra_step_cnt, &skip_update, + &pdp_new) == -1) { + goto err_close; + } + + /* loop through the arguments. */ + for (arg_i = 0; arg_i < argc; arg_i++) { + if ((arg_copy = strdup(argv[arg_i])) == NULL) { + rrd_set_error("failed duplication argv entry"); + break; + } + if (process_arg(arg_copy, &rrd, rrd_file, rra_begin, + ¤t_time, ¤t_time_usec, pdp_temp, pdp_new, + rra_step_cnt, updvals, tmpl_idx, tmpl_cnt, + &pcdp_summary, version, skip_update, + &schedule_smooth) == -1) { + if (rrd_test_error()) { /* Should have error string always here */ + char *save_error; + + /* Prepend file name to error message */ + if ((save_error = strdup(rrd_get_error())) != NULL) { + rrd_set_error("%s: %s", filename, save_error); + free(save_error); + } + } + free(arg_copy); + break; + } + free(arg_copy); + } + + free(rra_step_cnt); - if((updvals = malloc( sizeof(char*) * (rrd.stat_head->ds_cnt+1)))==NULL){ - rrd_set_error("allocating updvals pointer array"); - rrd_free(&rrd); - fclose(rrd_file); - return(-1); + /* if we got here and if there is an error and if the file has not been + * written to, then close things up and return. */ + if (rrd_test_error()) { + goto err_free_structures; } +#ifndef HAVE_MMAP + if (write_changes_to_disk(&rrd, rrd_file, version) == -1) { + goto err_free_structures; + } +#endif - if ((pdp_temp = malloc(sizeof(rrd_value_t) - *rrd.stat_head->ds_cnt))==NULL){ - rrd_set_error("allocating pdp_temp ..."); - free(updvals); - rrd_free(&rrd); - fclose(rrd_file); - return(-1); + /* calling the smoothing code here guarantees at most one smoothing + * operation per rrd_update call. Unfortunately, it is possible with bulk + * updates, or a long-delayed update for smoothing to occur off-schedule. + * This really isn't critical except during the burn-in cycles. */ + if (schedule_smooth) { + smooth_all_rras(&rrd, rrd_file, rra_begin); } - if ((tmpl_idx = malloc(sizeof(unsigned long) - *(rrd.stat_head->ds_cnt+1)))==NULL){ - rrd_set_error("allocating tmpl_idx ..."); - free(pdp_temp); - free(updvals); - rrd_free(&rrd); - fclose(rrd_file); - return(-1); +/* rrd_dontneed(rrd_file,&rrd); */ + rrd_free(&rrd); + rrd_close(rrd_file); + + free(pdp_new); + free(tmpl_idx); + free(pdp_temp); + free(skip_update); + free(updvals); + return 0; + + err_free_structures: + free(pdp_new); + free(tmpl_idx); + free(pdp_temp); + free(skip_update); + free(updvals); + err_close: + rrd_close(rrd_file); + err_free: + rrd_free(&rrd); + err_out: + return -1; +} + +/* + * Allocate some important arrays used, and initialize the template. + * + * When it returns, either all of the structures are allocated + * or none of them are. + * + * Returns 0 on success, -1 on error. + */ +static int allocate_data_structures( + rrd_t *rrd, + char ***updvals, + rrd_value_t **pdp_temp, + const char *tmplt, + long **tmpl_idx, + unsigned long *tmpl_cnt, + unsigned long **rra_step_cnt, + unsigned long **skip_update, + rrd_value_t **pdp_new) +{ + unsigned i, ii; + if ((*updvals = (char **) malloc(sizeof(char *) + * (rrd->stat_head->ds_cnt + 1))) == NULL) { + rrd_set_error("allocating updvals pointer array."); + return -1; + } + if ((*pdp_temp = (rrd_value_t *) malloc(sizeof(rrd_value_t) + * rrd->stat_head->ds_cnt)) == + NULL) { + rrd_set_error("allocating pdp_temp."); + goto err_free_updvals; + } + if ((*skip_update = (unsigned long *) malloc(sizeof(unsigned long) + * + rrd->stat_head->rra_cnt)) == + NULL) { + rrd_set_error("allocating skip_update."); + goto err_free_pdp_temp; } + if ((*tmpl_idx = (long *) malloc(sizeof(unsigned long) + * (rrd->stat_head->ds_cnt + 1))) == NULL) { + rrd_set_error("allocating tmpl_idx."); + goto err_free_skip_update; + } + if ((*rra_step_cnt = (unsigned long *) malloc(sizeof(unsigned long) + * + (rrd->stat_head-> + rra_cnt))) == NULL) { + rrd_set_error("allocating rra_step_cnt."); + goto err_free_tmpl_idx; + } + /* initialize tmplt redirector */ /* default config example (assume DS 1 is a CDEF DS) tmpl_idx[0] -> 0; (time) tmpl_idx[1] -> 1; (DS 0) tmpl_idx[2] -> 3; (DS 2) tmpl_idx[3] -> 4; (DS 3) */ - tmpl_idx[0] = 0; /* time */ - for (i = 1, ii = 1 ; i <= rrd.stat_head->ds_cnt ; i++) - { - if (dst_conv(rrd.ds_def[i-1].dst) != DST_CDEF) - tmpl_idx[ii++]=i; - } - tmpl_cnt= ii; - - if (tmplt) { - /* we should work on a writeable copy here */ - char *dsname; - unsigned int tmpl_len; - tmplt = strdup(tmplt); - dsname = tmplt; - tmpl_cnt = 1; /* the first entry is the time */ - tmpl_len = strlen(tmplt); - for(i=0;i<=tmpl_len ;i++) { - if (tmplt[i] == ':' || tmplt[i] == '\0') { - tmplt[i] = '\0'; - if (tmpl_cnt>rrd.stat_head->ds_cnt){ - rrd_set_error("tmplt contains more DS definitions than RRD"); - free(updvals); free(pdp_temp); - free(tmpl_idx); rrd_free(&rrd); - fclose(rrd_file); return(-1); - } - if ((tmpl_idx[tmpl_cnt++] = ds_match(&rrd,dsname)) == -1){ - rrd_set_error("unknown DS name '%s'",dsname); - free(updvals); free(pdp_temp); - free(tmplt); - free(tmpl_idx); rrd_free(&rrd); - fclose(rrd_file); return(-1); - } else { - /* the first element is always the time */ - tmpl_idx[tmpl_cnt-1]++; - /* go to the next entry on the tmplt */ - dsname = &tmplt[i+1]; - /* fix the damage we did before */ - if (istat_head->ds_cnt; i++) { + if (dst_conv(rrd->ds_def[i - 1].dst) != DST_CDEF) + (*tmpl_idx)[ii++] = i; } - if ((pdp_new = malloc(sizeof(rrd_value_t) - *rrd.stat_head->ds_cnt))==NULL){ - rrd_set_error("allocating pdp_new ..."); - free(updvals); - free(pdp_temp); - free(tmpl_idx); - rrd_free(&rrd); - fclose(rrd_file); - return(-1); + *tmpl_cnt = ii; + + if (tmplt != NULL) { + if (parse_template(rrd, tmplt, tmpl_cnt, *tmpl_idx) == -1) { + goto err_free_rra_step_cnt; + } } -#ifdef HAVE_MMAP - rrd_mmaped_file = mmap(0, - rrd_filesize, - PROT_READ | PROT_WRITE, - MAP_SHARED, - fileno(rrd_file), - 0); - if (rrd_mmaped_file == MAP_FAILED) { - rrd_set_error("error mmapping file %s", filename); - free(updvals); - free(pdp_temp); - free(tmpl_idx); - rrd_free(&rrd); - fclose(rrd_file); - return(-1); + if ((*pdp_new = (rrd_value_t *) malloc(sizeof(rrd_value_t) + * rrd->stat_head->ds_cnt)) == NULL) { + rrd_set_error("allocating pdp_new."); + goto err_free_rra_step_cnt; } -#endif - /* loop through the arguments. */ - for(arg_i=0; arg_ids_cnt;ii++) updvals[ii] = "U"; - updvals[0]=stepper; - /* separate all ds elements; first must be examined separately - due to alternate time syntax */ - if ((p=strchr(stepper,'@'))!=NULL) { - timesyntax = atstyle; - *p = '\0'; - stepper = p+1; - } else if ((p=strchr(stepper,':'))!=NULL) { - timesyntax = normal; - *p = '\0'; - stepper = p+1; - } else { - rrd_set_error("expected timestamp not found in data source from %s", - argv[arg_i]); - free(step_start); - break; - } - ii=1; - updvals[tmpl_idx[ii]] = stepper; - while (*stepper) { - if (*stepper == ':') { - *stepper = '\0'; - ii++; - if (iilast_up || - (current_time == rrd.live_head->last_up && - (long)current_time_usec <= (long)rrd.live_head->last_up_usec)) { - rrd_set_error("illegal attempt to update using time %ld when " - "last update time is %ld (minimum one second step)", - current_time, rrd.live_head->last_up); - free(step_start); - break; - } - - - /* seek to the beginning of the rra's */ - if (rra_current != rra_begin) { -#ifndef HAVE_MMAP - if(fseek(rrd_file, rra_begin, SEEK_SET) != 0) { - rrd_set_error("seek error in rrd"); - free(step_start); - break; - } -#endif - rra_current = rra_begin; - } - rra_start = rra_begin; - - /* when was the current pdp started */ - proc_pdp_age = rrd.live_head->last_up % rrd.stat_head->pdp_step; - proc_pdp_st = rrd.live_head->last_up - proc_pdp_age; - - /* when did the last pdp_st occur */ - occu_pdp_age = current_time % rrd.stat_head->pdp_step; - occu_pdp_st = current_time - occu_pdp_age; - - /* interval = current_time - rrd.live_head->last_up; */ - interval = (double)(current_time - rrd.live_head->last_up) - + (double)((long)current_time_usec - (long)rrd.live_head->last_up_usec)/1000000.0; - - if (occu_pdp_st > proc_pdp_st){ - /* OK we passed the pdp_st moment*/ - pre_int = (long)occu_pdp_st - rrd.live_head->last_up; /* how much of the input data - * occurred before the latest - * pdp_st moment*/ - pre_int -= ((double)rrd.live_head->last_up_usec)/1000000.0; /* adjust usecs */ - post_int = occu_pdp_age; /* how much after it */ - post_int += ((double)current_time_usec)/1000000.0; /* adjust usecs */ - } else { - pre_int = interval; - post_int = 0; - } -#ifdef DEBUG - printf( - "proc_pdp_age %lu\t" - "proc_pdp_st %lu\t" - "occu_pfp_age %lu\t" - "occu_pdp_st %lu\t" - "int %lf\t" - "pre_int %lf\t" - "post_int %lf\n", proc_pdp_age, proc_pdp_st, - occu_pdp_age, occu_pdp_st, - interval, pre_int, post_int); -#endif - - /* process the data sources and update the pdp_prep - * area accordingly */ - for(i=0;ids_cnt;i++){ - enum dst_en dst_idx; - dst_idx= dst_conv(rrd.ds_def[i].dst); - - /* make sure we do not build diffs with old last_ds values */ - if(rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt < interval) { - strncpy(rrd.pdp_prep[i].last_ds,"U",LAST_DS_LEN-1); - rrd.pdp_prep[i].last_ds[LAST_DS_LEN-1]='\0'; - } - - /* NOTE: DST_CDEF should never enter this if block, because - * updvals[i+1][0] is initialized to 'U'; unless the caller - * accidently specified a value for the DST_CDEF. To handle - * this case, an extra check is required. */ - - if((updvals[i+1][0] != 'U') && - (dst_idx != DST_CDEF) && - rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt >= interval) { - double rate = DNAN; - /* the data source type defines how to process the data */ - /* pdp_new contains rate * time ... eg the bytes - * transferred during the interval. Doing it this way saves - * a lot of math operations */ - - - switch(dst_idx){ - case DST_COUNTER: - case DST_DERIVE: - if(rrd.pdp_prep[i].last_ds[0] != 'U'){ - for(ii=0;updvals[i+1][ii] != '\0';ii++){ - if(updvals[i+1][ii] < '0' || updvals[i+1][ii] > '9' || (ii==0 && updvals[i+1][ii] == '-')){ - rrd_set_error("not a simple integer: '%s'",updvals[i+1]); - break; - } - } - if (rrd_test_error()){ - break; - } - pdp_new[i]= rrd_diff(updvals[i+1],rrd.pdp_prep[i].last_ds); - if(dst_idx == DST_COUNTER) { - /* simple overflow catcher suggested by Andres Kroonmaa */ - /* this will fail terribly for non 32 or 64 bit counters ... */ - /* are there any others in SNMP land ? */ - if (pdp_new[i] < (double)0.0 ) - pdp_new[i] += (double)4294967296.0 ; /* 2^32 */ - if (pdp_new[i] < (double)0.0 ) - pdp_new[i] += (double)18446744069414584320.0; /* 2^64-2^32 */; - } - rate = pdp_new[i] / interval; - } - else { - pdp_new[i]= DNAN; - } - break; - case DST_ABSOLUTE: - errno = 0; - pdp_new[i] = strtod(updvals[i+1],&endptr); - if (errno > 0){ - rrd_set_error("converting '%s' to float: %s",updvals[i+1],rrd_strerror(errno)); - break; - }; - if (endptr[0] != '\0'){ - rrd_set_error("conversion of '%s' to float not complete: tail '%s'",updvals[i+1],endptr); - break; + return 0; + + err_free_rra_step_cnt: + free(*rra_step_cnt); + err_free_tmpl_idx: + free(*tmpl_idx); + err_free_skip_update: + free(*skip_update); + err_free_pdp_temp: + free(*pdp_temp); + err_free_updvals: + free(*updvals); + return -1; +} + +/* + * Parses tmplt and puts an ordered list of DS's into tmpl_idx. + * + * Returns 0 on success. + */ +static int parse_template( + rrd_t *rrd, + const char *tmplt, + unsigned long *tmpl_cnt, + long *tmpl_idx) +{ + char *dsname, *tmplt_copy; + unsigned int tmpl_len, i; + int ret = 0; + + *tmpl_cnt = 1; /* the first entry is the time */ + + /* we should work on a writeable copy here */ + if ((tmplt_copy = strdup(tmplt)) == NULL) { + rrd_set_error("error copying tmplt '%s'", tmplt); + ret = -1; + goto out; + } + + dsname = tmplt_copy; + tmpl_len = strlen(tmplt_copy); + for (i = 0; i <= tmpl_len; i++) { + if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') { + tmplt_copy[i] = '\0'; + if (*tmpl_cnt > rrd->stat_head->ds_cnt) { + rrd_set_error("tmplt contains more DS definitions than RRD"); + ret = -1; + goto out_free_tmpl_copy; + } + if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname) + 1) == 0) { + rrd_set_error("unknown DS name '%s'", dsname); + ret = -1; + goto out_free_tmpl_copy; + } + /* go to the next entry on the tmplt_copy */ + if (i < tmpl_len) + dsname = &tmplt_copy[i + 1]; + } + } + out_free_tmpl_copy: + free(tmplt_copy); + out: + return ret; +} + +/* + * Parse an update string, updates the primary data points (PDPs) + * and consolidated data points (CDPs), and writes changes to the RRAs. + * + * Returns 0 on success, -1 on error. + */ +static int process_arg( + char *step_start, + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin, + time_t *current_time, + unsigned long *current_time_usec, + rrd_value_t *pdp_temp, + rrd_value_t *pdp_new, + unsigned long *rra_step_cnt, + char **updvals, + long *tmpl_idx, + unsigned long tmpl_cnt, + rrd_info_t ** pcdp_summary, + int version, + unsigned long *skip_update, + int *schedule_smooth) +{ + rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL; + + /* a vector of future Holt-Winters seasonal coefs */ + unsigned long elapsed_pdp_st; + + double interval, pre_int, post_int; /* interval between this and + * the last run */ + unsigned long proc_pdp_cnt; + + if (parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt, + current_time, current_time_usec, version) == -1) { + return -1; + } + + interval = (double) (*current_time - rrd->live_head->last_up) + + (double) ((long) *current_time_usec - + (long) rrd->live_head->last_up_usec) / 1e6f; + + /* process the data sources and update the pdp_prep + * area accordingly */ + if (update_pdp_prep(rrd, updvals, pdp_new, interval) == -1) { + return -1; + } + + elapsed_pdp_st = calculate_elapsed_steps(rrd, + *current_time, + *current_time_usec, interval, + &pre_int, &post_int, + &proc_pdp_cnt); + + /* has a pdp_st moment occurred since the last run ? */ + if (elapsed_pdp_st == 0) { + /* no we have not passed a pdp_st moment. therefore update is simple */ + simple_update(rrd, interval, pdp_new); + } else { + /* an pdp_st has occurred. */ + if (process_all_pdp_st(rrd, interval, + pre_int, post_int, + elapsed_pdp_st, pdp_new, pdp_temp) == -1) { + return -1; + } + if (update_all_cdp_prep(rrd, rra_step_cnt, + rra_begin, rrd_file, + elapsed_pdp_st, + proc_pdp_cnt, + &last_seasonal_coef, + &seasonal_coef, + pdp_temp, + skip_update, schedule_smooth) == -1) { + goto err_free_coefficients; + } + if (update_aberrant_cdps(rrd, rrd_file, rra_begin, + elapsed_pdp_st, pdp_temp, + &seasonal_coef) == -1) { + goto err_free_coefficients; + } + if (write_to_rras(rrd, rrd_file, rra_step_cnt, rra_begin, + *current_time, skip_update, + pcdp_summary) == -1) { + goto err_free_coefficients; + } + } /* endif a pdp_st has occurred */ + rrd->live_head->last_up = *current_time; + rrd->live_head->last_up_usec = *current_time_usec; + + if (version < 3) { + *rrd->legacy_last_up = rrd->live_head->last_up; + } + free(seasonal_coef); + free(last_seasonal_coef); + return 0; + + err_free_coefficients: + free(seasonal_coef); + free(last_seasonal_coef); + return -1; +} + +/* + * Parse a DS string (time + colon-separated values), storing the + * results in current_time, current_time_usec, and updvals. + * + * Returns 0 on success, -1 on error. + */ +static int parse_ds( + rrd_t *rrd, + char **updvals, + long *tmpl_idx, + char *input, + unsigned long tmpl_cnt, + time_t *current_time, + unsigned long *current_time_usec, + int version) +{ + char *p; + unsigned long i; + char timesyntax; + + updvals[0] = input; + /* initialize all ds input to unknown except the first one + which has always got to be set */ + for (i = 1; i <= rrd->stat_head->ds_cnt; i++) + updvals[i] = "U"; + + /* separate all ds elements; first must be examined separately + due to alternate time syntax */ + if ((p = strchr(input, '@')) != NULL) { + timesyntax = '@'; + } else if ((p = strchr(input, ':')) != NULL) { + timesyntax = ':'; + } else { + rrd_set_error("expected timestamp not found in data source from %s", + input); + return -1; + } + *p = '\0'; + i = 1; + updvals[tmpl_idx[i++]] = p + 1; + while (*(++p)) { + if (*p == ':') { + *p = '\0'; + if (i < tmpl_cnt) { + updvals[tmpl_idx[i++]] = p + 1; + } + else { + rrd_set_error("found extra data on update argument: %s",p+1); + return -1; + } + } + } + + if (i != tmpl_cnt) { + rrd_set_error("expected %lu data source readings (got %lu) from %s", + tmpl_cnt - 1, i - 1, input); + return -1; + } + + if (get_time_from_reading(rrd, timesyntax, updvals, + current_time, current_time_usec, + version) == -1) { + return -1; + } + return 0; +} + +/* + * Parse the time in a DS string, store it in current_time and + * current_time_usec and verify that it's later than the last + * update for this DS. + * + * Returns 0 on success, -1 on error. + */ +static int get_time_from_reading( + rrd_t *rrd, + char timesyntax, + char **updvals, + time_t *current_time, + unsigned long *current_time_usec, + int version) +{ + double tmp; + char *parsetime_error = NULL; + char *old_locale; + rrd_time_value_t ds_tv; + struct timeval tmp_time; /* used for time conversion */ + + /* get the time from the reading ... handle N */ + if (timesyntax == '@') { /* at-style */ + if ((parsetime_error = rrd_parsetime(updvals[0], &ds_tv))) { + rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error); + return -1; + } + if (ds_tv.type == RELATIVE_TO_END_TIME || + ds_tv.type == RELATIVE_TO_START_TIME) { + rrd_set_error("specifying time relative to the 'start' " + "or 'end' makes no sense here: %s", updvals[0]); + return -1; + } + *current_time = mktime(&ds_tv.tm) +ds_tv.offset; + *current_time_usec = 0; /* FIXME: how to handle usecs here ? */ + } else if (strcmp(updvals[0], "N") == 0) { + gettimeofday(&tmp_time, 0); + normalize_time(&tmp_time); + *current_time = tmp_time.tv_sec; + *current_time_usec = tmp_time.tv_usec; + } else { + old_locale = setlocale(LC_NUMERIC, NULL); + setlocale(LC_NUMERIC, "C"); + errno = 0; + tmp = strtod(updvals[0], 0); + if (errno > 0) { + rrd_set_error("converting '%s' to float: %s", + updvals[0], rrd_strerror(errno)); + return -1; + }; + setlocale(LC_NUMERIC, old_locale); + if (tmp < 0.0){ + gettimeofday(&tmp_time, 0); + tmp = (double)tmp_time.tv_sec + (double)tmp_time.tv_usec * 1e-6f + tmp; + } + + *current_time = floor(tmp); + *current_time_usec = (long) ((tmp - (double) *current_time) * 1e6f); + } + /* dont do any correction for old version RRDs */ + if (version < 3) + *current_time_usec = 0; + + if (*current_time < rrd->live_head->last_up || + (*current_time == rrd->live_head->last_up && + (long) *current_time_usec <= (long) rrd->live_head->last_up_usec)) { + rrd_set_error("illegal attempt to update using time %ld when " + "last update time is %ld (minimum one second step)", + *current_time, rrd->live_head->last_up); + return -1; + } + return 0; +} + +/* + * Update pdp_new by interpreting the updvals according to the DS type + * (COUNTER, GAUGE, etc.). + * + * Returns 0 on success, -1 on error. + */ +static int update_pdp_prep( + rrd_t *rrd, + char **updvals, + rrd_value_t *pdp_new, + double interval) +{ + unsigned long ds_idx; + int ii; + char *endptr; /* used in the conversion */ + double rate; + char *old_locale; + enum dst_en dst_idx; + + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + dst_idx = dst_conv(rrd->ds_def[ds_idx].dst); + + /* make sure we do not build diffs with old last_ds values */ + if (rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt < interval) { + strncpy(rrd->pdp_prep[ds_idx].last_ds, "U", LAST_DS_LEN - 1); + rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0'; + } + + /* NOTE: DST_CDEF should never enter this if block, because + * updvals[ds_idx+1][0] is initialized to 'U'; unless the caller + * accidently specified a value for the DST_CDEF. To handle this case, + * an extra check is required. */ + + if ((updvals[ds_idx + 1][0] != 'U') && + (dst_idx != DST_CDEF) && + rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) { + rate = DNAN; + + /* pdp_new contains rate * time ... eg the bytes transferred during + * the interval. Doing it this way saves a lot of math operations + */ + switch (dst_idx) { + case DST_COUNTER: + case DST_DERIVE: + /* Check if this is a valid integer. `U' is already handled in + * another branch. */ + for (ii = 0; updvals[ds_idx + 1][ii] != 0; ii++) { + if ((ii == 0) && (dst_idx == DST_DERIVE) + && (updvals[ds_idx + 1][ii] == '-')) + continue; + + if ((updvals[ds_idx + 1][ii] < '0') + || (updvals[ds_idx + 1][ii] > '9')) { + rrd_set_error("not a simple %s integer: '%s'", + (dst_idx == DST_DERIVE) ? "signed" : "unsigned", + updvals[ds_idx + 1]); + return -1; } - rate = pdp_new[i] / interval; - break; - case DST_GAUGE: - errno = 0; - pdp_new[i] = strtod(updvals[i+1],&endptr) * interval; - if (errno > 0){ - rrd_set_error("converting '%s' to float: %s",updvals[i+1],rrd_strerror(errno)); - break; - }; - if (endptr[0] != '\0'){ - rrd_set_error("conversion of '%s' to float not complete: tail '%s'",updvals[i+1],endptr); - break; + } /* for (ii = 0; updvals[ds_idx + 1][ii] != 0; ii++) */ + + if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') { + pdp_new[ds_idx] = + rrd_diff(updvals[ds_idx + 1], + rrd->pdp_prep[ds_idx].last_ds); + if (dst_idx == DST_COUNTER) { + /* simple overflow catcher. This will fail + * terribly for non 32 or 64 bit counters + * ... are there any others in SNMP land? + */ + if (pdp_new[ds_idx] < (double) 0.0) + pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */ + if (pdp_new[ds_idx] < (double) 0.0) + pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */ } - rate = pdp_new[i] / interval; - break; - default: - rrd_set_error("rrd contains unknown DS type : '%s'", - rrd.ds_def[i].dst); - break; - } - /* break out of this for loop if the error string is set */ - if (rrd_test_error()){ - break; - } - /* make sure pdp_temp is neither too large or too small - * if any of these occur it becomes unknown ... - * sorry folks ... */ - if ( ! isnan(rate) && - (( ! isnan(rrd.ds_def[i].par[DS_max_val].u_val) && - rate > rrd.ds_def[i].par[DS_max_val].u_val ) || - ( ! isnan(rrd.ds_def[i].par[DS_min_val].u_val) && - rate < rrd.ds_def[i].par[DS_min_val].u_val ))){ - pdp_new[i] = DNAN; - } - } else { - /* no news is news all the same */ - pdp_new[i] = DNAN; - } - - - /* make a copy of the command line argument for the next run */ + rate = pdp_new[ds_idx] / interval; + } else { + pdp_new[ds_idx] = DNAN; + } + break; + case DST_ABSOLUTE: + old_locale = setlocale(LC_NUMERIC, NULL); + setlocale(LC_NUMERIC, "C"); + errno = 0; + pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr); + if (errno > 0) { + rrd_set_error("converting '%s' to float: %s", + updvals[ds_idx + 1], rrd_strerror(errno)); + return -1; + }; + setlocale(LC_NUMERIC, old_locale); + if (endptr[0] != '\0') { + rrd_set_error + ("conversion of '%s' to float not complete: tail '%s'", + updvals[ds_idx + 1], endptr); + return -1; + } + rate = pdp_new[ds_idx] / interval; + break; + case DST_GAUGE: + old_locale = setlocale(LC_NUMERIC, NULL); + setlocale(LC_NUMERIC, "C"); + errno = 0; + pdp_new[ds_idx] = + strtod(updvals[ds_idx + 1], &endptr) * interval; + if (errno) { + rrd_set_error("converting '%s' to float: %s", + updvals[ds_idx + 1], rrd_strerror(errno)); + return -1; + }; + setlocale(LC_NUMERIC, old_locale); + if (endptr[0] != '\0') { + rrd_set_error + ("conversion of '%s' to float not complete: tail '%s'", + updvals[ds_idx + 1], endptr); + return -1; + } + rate = pdp_new[ds_idx] / interval; + break; + default: + rrd_set_error("rrd contains unknown DS type : '%s'", + rrd->ds_def[ds_idx].dst); + return -1; + } + /* break out of this for loop if the error string is set */ + if (rrd_test_error()) { + return -1; + } + /* make sure pdp_temp is neither too large or too small + * if any of these occur it becomes unknown ... + * sorry folks ... */ + if (!isnan(rate) && + ((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) && + rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) || + (!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) && + rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) { + pdp_new[ds_idx] = DNAN; + } + } else { + /* no news is news all the same */ + pdp_new[ds_idx] = DNAN; + } + + + /* make a copy of the command line argument for the next run */ #ifdef DEBUG - fprintf(stderr, - "prep ds[%lu]\t" - "last_arg '%s'\t" - "this_arg '%s'\t" - "pdp_new %10.2f\n", - i, - rrd.pdp_prep[i].last_ds, - updvals[i+1], pdp_new[i]); + fprintf(stderr, "prep ds[%lu]\t" + "last_arg '%s'\t" + "this_arg '%s'\t" + "pdp_new %10.2f\n", + ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1], + pdp_new[ds_idx]); #endif - strncpy(rrd.pdp_prep[i].last_ds, updvals[i+1],LAST_DS_LEN-1); - rrd.pdp_prep[i].last_ds[LAST_DS_LEN-1]='\0'; - } - /* break out of the argument parsing loop if the error_string is set */ - if (rrd_test_error()){ - free(step_start); - break; - } - /* has a pdp_st moment occurred since the last run ? */ - - if (proc_pdp_st == occu_pdp_st){ - /* no we have not passed a pdp_st moment. therefore update is simple */ - - for(i=0;ids_cnt;i++){ - if(isnan(pdp_new[i])) { - /* this is not realy accurate if we use subsecond data arival time - should have thought of it when going subsecond resolution ... - sorry next format change we will have it! */ - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += floor(interval); - } else { - if (isnan( rrd.pdp_prep[i].scratch[PDP_val].u_val )){ - rrd.pdp_prep[i].scratch[PDP_val].u_val= pdp_new[i]; - } else { - rrd.pdp_prep[i].scratch[PDP_val].u_val+= pdp_new[i]; - } - } -#ifdef DEBUG - fprintf(stderr, - "NO PDP ds[%lu]\t" - "value %10.2f\t" - "unkn_sec %5lu\n", - i, - rrd.pdp_prep[i].scratch[PDP_val].u_val, - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt); -#endif - } - } else { - /* an pdp_st has occurred. */ - - /* in pdp_prep[].scratch[PDP_val].u_val we have collected rate*seconds which - * occurred up to the last run. - pdp_new[] contains rate*seconds from the latest run. - pdp_temp[] will contain the rate for cdp */ - - for(i=0;ids_cnt;i++){ - /* update pdp_prep to the current pdp_st. */ - double pre_unknown = 0.0; - if(isnan(pdp_new[i])) - /* a final bit of unkonwn to be added bevore calculation - * we use a tempaorary variable for this so that we - * don't have to turn integer lines before using the value */ - pre_unknown = pre_int; - else { - if (isnan( rrd.pdp_prep[i].scratch[PDP_val].u_val )){ - rrd.pdp_prep[i].scratch[PDP_val].u_val= pdp_new[i]/interval*pre_int; - } else { - rrd.pdp_prep[i].scratch[PDP_val].u_val+= pdp_new[i]/interval*pre_int; - } - } - - - /* if too much of the pdp_prep is unknown we dump it */ - if ( - /* removed because this does not agree with the definition - a heart beat can be unknown */ - /* (rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt - > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) || */ - /* if the interval is larger thatn mrhb we get NAN */ - (interval > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) || - (occu_pdp_st-proc_pdp_st <= - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt)) { - pdp_temp[i] = DNAN; - } else { - pdp_temp[i] = rrd.pdp_prep[i].scratch[PDP_val].u_val - / ((double)(occu_pdp_st - proc_pdp_st - - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt) - -pre_unknown); - } - - /* process CDEF data sources; remember each CDEF DS can - * only reference other DS with a lower index number */ - if (dst_conv(rrd.ds_def[i].dst) == DST_CDEF) { - rpnp_t *rpnp; - rpnp = rpn_expand((rpn_cdefds_t *) &(rrd.ds_def[i].par[DS_cdef])); - /* substitue data values for OP_VARIABLE nodes */ - for (ii = 0; rpnp[ii].op != OP_END; ii++) - { - if (rpnp[ii].op == OP_VARIABLE) { - rpnp[ii].op = OP_NUMBER; - rpnp[ii].val = pdp_temp[rpnp[ii].ptr]; - } - } - /* run the rpn calculator */ - if (rpn_calc(rpnp,&rpnstack,0,pdp_temp,i) == -1) { - free(rpnp); - break; /* exits the data sources pdp_temp loop */ - } - } - - /* make pdp_prep ready for the next run */ - if(isnan(pdp_new[i])){ - /* this is not realy accurate if we use subsecond data arival time - should have thought of it when going subsecond resolution ... - sorry next format change we will have it! */ - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int); - rrd.pdp_prep[i].scratch[PDP_val].u_val = DNAN; - } else { - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = 0; - rrd.pdp_prep[i].scratch[PDP_val].u_val = - pdp_new[i]/interval*post_int; - } + strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1], + LAST_DS_LEN - 1); + rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0'; + } + return 0; +} -#ifdef DEBUG - fprintf(stderr, - "PDP UPD ds[%lu]\t" - "pdp_temp %10.2f\t" - "new_prep %10.2f\t" - "new_unkn_sec %5lu\n", - i, pdp_temp[i], - rrd.pdp_prep[i].scratch[PDP_val].u_val, - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt); -#endif - } +/* + * How many PDP steps have elapsed since the last update? Returns the answer, + * and stores the time between the last update and the last PDP in pre_time, + * and the time between the last PDP and the current time in post_int. + */ +static int calculate_elapsed_steps( + rrd_t *rrd, + unsigned long current_time, + unsigned long current_time_usec, + double interval, + double *pre_int, + double *post_int, + unsigned long *proc_pdp_cnt) +{ + unsigned long proc_pdp_st; /* which pdp_st was the last to be processed */ + unsigned long occu_pdp_st; /* when was the pdp_st before the last update + * time */ + unsigned long proc_pdp_age; /* how old was the data in the pdp prep area + * when it was last updated */ + unsigned long occu_pdp_age; /* how long ago was the last pdp_step time */ + + /* when was the current pdp started */ + proc_pdp_age = rrd->live_head->last_up % rrd->stat_head->pdp_step; + proc_pdp_st = rrd->live_head->last_up - proc_pdp_age; + + /* when did the last pdp_st occur */ + occu_pdp_age = current_time % rrd->stat_head->pdp_step; + occu_pdp_st = current_time - occu_pdp_age; + + if (occu_pdp_st > proc_pdp_st) { + /* OK we passed the pdp_st moment */ + *pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data + * occurred before the latest + * pdp_st moment*/ + *pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */ + *post_int = occu_pdp_age; /* how much after it */ + *post_int += ((double) current_time_usec) / 1e6f; /* adjust usecs */ + } else { + *pre_int = interval; + *post_int = 0; + } - /* if there were errors during the last loop, bail out here */ - if (rrd_test_error()){ - free(step_start); - break; - } + *proc_pdp_cnt = proc_pdp_st / rrd->stat_head->pdp_step; - /* compute the number of elapsed pdp_st moments */ - elapsed_pdp_st = (occu_pdp_st - proc_pdp_st) / rrd.stat_head -> pdp_step; #ifdef DEBUG - fprintf(stderr,"elapsed PDP steps: %lu\n", elapsed_pdp_st); + printf("proc_pdp_age %lu\t" + "proc_pdp_st %lu\t" + "occu_pfp_age %lu\t" + "occu_pdp_st %lu\t" + "int %lf\t" + "pre_int %lf\t" + "post_int %lf\n", proc_pdp_age, proc_pdp_st, + occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int); #endif - if (rra_step_cnt == NULL) - { - rra_step_cnt = (unsigned long *) - malloc((rrd.stat_head->rra_cnt)* sizeof(unsigned long)); - } - - for(i = 0, rra_start = rra_begin; - i < rrd.stat_head->rra_cnt; - rra_start += rrd.rra_def[i].row_cnt * rrd.stat_head -> ds_cnt * sizeof(rrd_value_t), - i++) - { - current_cf = cf_conv(rrd.rra_def[i].cf_nam); - start_pdp_offset = rrd.rra_def[i].pdp_cnt - - (proc_pdp_st / rrd.stat_head -> pdp_step) % rrd.rra_def[i].pdp_cnt; - if (start_pdp_offset <= elapsed_pdp_st) { - rra_step_cnt[i] = (elapsed_pdp_st - start_pdp_offset) / - rrd.rra_def[i].pdp_cnt + 1; - } else { - rra_step_cnt[i] = 0; - } - - if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) - { - /* If this is a bulk update, we need to skip ahead in the seasonal - * arrays so that they will be correct for the next observed value; - * note that for the bulk update itself, no update will occur to - * DEVSEASONAL or SEASONAL; futhermore, HWPREDICT and DEVPREDICT will - * be set to DNAN. */ - if (rra_step_cnt[i] > 2) - { - /* skip update by resetting rra_step_cnt[i], - * note that this is not data source specific; this is due - * to the bulk update, not a DNAN value for the specific data - * source. */ - rra_step_cnt[i] = 0; - lookup_seasonal(&rrd,i,rra_start,rrd_file,elapsed_pdp_st, - &last_seasonal_coef); - lookup_seasonal(&rrd,i,rra_start,rrd_file,elapsed_pdp_st + 1, - &seasonal_coef); - } - - /* periodically run a smoother for seasonal effects */ - /* Need to use first cdp parameter buffer to track - * burnin (burnin requires a specific smoothing schedule). - * The CDP_init_seasonal parameter is really an RRA level, - * not a data source within RRA level parameter, but the rra_def - * is read only for rrd_update (not flushed to disk). */ - iii = i*(rrd.stat_head -> ds_cnt); - if (rrd.cdp_prep[iii].scratch[CDP_init_seasonal].u_cnt - <= BURNIN_CYCLES) - { - if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st - > rrd.rra_def[i].row_cnt - 1) { - /* mark off one of the burnin cycles */ - ++(rrd.cdp_prep[iii].scratch[CDP_init_seasonal].u_cnt); - schedule_smooth = 1; - } - } else { - /* someone has no doubt invented a trick to deal with this - * wrap around, but at least this code is clear. */ - if (rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt > - rrd.rra_ptr[i].cur_row) - { - /* here elapsed_pdp_st = rra_step_cnt[i] because of 1-1 - * mapping between PDP and CDP */ - if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st - >= rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt) - { + + /* compute the number of elapsed pdp_st moments */ + return (occu_pdp_st - proc_pdp_st) / rrd->stat_head->pdp_step; +} + +/* + * Increment the PDP values by the values in pdp_new, or else initialize them. + */ +static void simple_update( + rrd_t *rrd, + double interval, + rrd_value_t *pdp_new) +{ + int i; + + for (i = 0; i < (signed) rrd->stat_head->ds_cnt; i++) { + if (isnan(pdp_new[i])) { + /* this is not really accurate if we use subsecond data arrival time + should have thought of it when going subsecond resolution ... + sorry next format change we will have it! */ + rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += + floor(interval); + } else { + if (isnan(rrd->pdp_prep[i].scratch[PDP_val].u_val)) { + rrd->pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i]; + } else { + rrd->pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i]; + } + } #ifdef DEBUG - fprintf(stderr, - "schedule_smooth 1: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n", - rrd.rra_ptr[i].cur_row, elapsed_pdp_st, - rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt); + fprintf(stderr, + "NO PDP ds[%i]\t" + "value %10.2f\t" + "unkn_sec %5lu\n", + i, + rrd->pdp_prep[i].scratch[PDP_val].u_val, + rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt); #endif - schedule_smooth = 1; - } - } else { - /* can't rely on negative numbers because we are working with - * unsigned values */ - /* Don't need modulus here. If we've wrapped more than once, only - * one smooth is executed at the end. */ - if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st >= rrd.rra_def[i].row_cnt - && rrd.rra_ptr[i].cur_row + elapsed_pdp_st - rrd.rra_def[i].row_cnt - >= rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt) - { + } +} + +/* + * Call process_pdp_st for each DS. + * + * Returns 0 on success, -1 on error. + */ +static int process_all_pdp_st( + rrd_t *rrd, + double interval, + double pre_int, + double post_int, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_new, + rrd_value_t *pdp_temp) +{ + unsigned long ds_idx; + + /* in pdp_prep[].scratch[PDP_val].u_val we have collected + rate*seconds which occurred up to the last run. + pdp_new[] contains rate*seconds from the latest run. + pdp_temp[] will contain the rate for cdp */ + + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + if (process_pdp_st(rrd, ds_idx, interval, pre_int, post_int, + elapsed_pdp_st * rrd->stat_head->pdp_step, + pdp_new, pdp_temp) == -1) { + return -1; + } #ifdef DEBUG - fprintf(stderr, - "schedule_smooth 2: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n", - rrd.rra_ptr[i].cur_row, elapsed_pdp_st, - rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt); + fprintf(stderr, "PDP UPD ds[%lu]\t" + "elapsed_pdp_st %lu\t" + "pdp_temp %10.2f\t" + "new_prep %10.2f\t" + "new_unkn_sec %5lu\n", + ds_idx, + elapsed_pdp_st, + pdp_temp[ds_idx], + rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val, + rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt); #endif - schedule_smooth = 1; - } - } - } - - rra_current = ftell(rrd_file); - } /* if cf is DEVSEASONAL or SEASONAL */ - - if (rrd_test_error()) break; - - /* update CDP_PREP areas */ - /* loop over data soures within each RRA */ - for(ii = 0; - ii < rrd.stat_head->ds_cnt; - ii++) - { - - /* iii indexes the CDP prep area for this data source within the RRA */ - iii=i*rrd.stat_head->ds_cnt+ii; - - if (rrd.rra_def[i].pdp_cnt > 1) { - - if (rra_step_cnt[i] > 0) { - /* If we are in this block, as least 1 CDP value will be written to - * disk, this is the CDP_primary_val entry. If more than 1 value needs - * to be written, then the "fill in" value is the CDP_secondary_val - * entry. */ - if (isnan(pdp_temp[ii])) - { - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt += start_pdp_offset; - rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = DNAN; - } else { - /* CDP_secondary value is the RRA "fill in" value for intermediary - * CDP data entries. No matter the CF, the value is the same because - * the average, max, min, and last of a list of identical values is - * the same, namely, the value itself. */ - rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = pdp_temp[ii]; - } - - if (rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt - > rrd.rra_def[i].pdp_cnt* - rrd.rra_def[i].par[RRA_cdp_xff_val].u_val) - { - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = DNAN; - /* initialize carry over */ - if (current_cf == CF_AVERAGE) { - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = DNAN; - } else { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii] * - ((elapsed_pdp_st - start_pdp_offset) % rrd.rra_def[i].pdp_cnt); - } - } else { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - } - } else { - rrd_value_t cum_val, cur_val; - switch (current_cf) { - case CF_AVERAGE: - cum_val = IFDNAN(rrd.cdp_prep[iii].scratch[CDP_val].u_val, 0.0); - cur_val = IFDNAN(pdp_temp[ii],0.0); - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = - (cum_val + cur_val * start_pdp_offset) / - (rrd.rra_def[i].pdp_cnt - -rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt); - /* initialize carry over value */ - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = DNAN; - } else { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii] * - ((elapsed_pdp_st - start_pdp_offset) % rrd.rra_def[i].pdp_cnt); - } - break; - case CF_MAXIMUM: - cum_val = IFDNAN(rrd.cdp_prep[iii].scratch[CDP_val].u_val, -DINF); - cur_val = IFDNAN(pdp_temp[ii],-DINF); + } + return 0; +} + +/* + * Process an update that occurs after one of the PDP moments. + * Increments the PDP value, sets NAN if time greater than the + * heartbeats have elapsed, processes CDEFs. + * + * Returns 0 on success, -1 on error. + */ +static int process_pdp_st( + rrd_t *rrd, + unsigned long ds_idx, + double interval, + double pre_int, + double post_int, + long diff_pdp_st, /* number of seconds in full steps passed since last update */ + rrd_value_t *pdp_new, + rrd_value_t *pdp_temp) +{ + int i; + + /* update pdp_prep to the current pdp_st. */ + double pre_unknown = 0.0; + unival *scratch = rrd->pdp_prep[ds_idx].scratch; + unsigned long mrhb = rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt; + + rpnstack_t rpnstack; /* used for COMPUTE DS */ + + rpnstack_init(&rpnstack); + + + if (isnan(pdp_new[ds_idx])) { + /* a final bit of unknown to be added before calculation + we use a temporary variable for this so that we + don't have to turn integer lines before using the value */ + pre_unknown = pre_int; + } else { + if (isnan(scratch[PDP_val].u_val)) { + scratch[PDP_val].u_val = 0; + } + scratch[PDP_val].u_val += pdp_new[ds_idx] / interval * pre_int; + } + + /* if too much of the pdp_prep is unknown we dump it */ + /* if the interval is larger thatn mrhb we get NAN */ + if ((interval > mrhb) || + (rrd->stat_head->pdp_step / 2.0 < + (signed) scratch[PDP_unkn_sec_cnt].u_cnt)) { + pdp_temp[ds_idx] = DNAN; + } else { + pdp_temp[ds_idx] = scratch[PDP_val].u_val / + ((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) - + pre_unknown); + } + + /* process CDEF data sources; remember each CDEF DS can + * only reference other DS with a lower index number */ + if (dst_conv(rrd->ds_def[ds_idx].dst) == DST_CDEF) { + rpnp_t *rpnp; + + rpnp = + rpn_expand((rpn_cdefds_t *) &(rrd->ds_def[ds_idx].par[DS_cdef])); + if(rpnp == NULL) { + rpnstack_free(&rpnstack); + return -1; + } + /* substitute data values for OP_VARIABLE nodes */ + for (i = 0; rpnp[i].op != OP_END; i++) { + if (rpnp[i].op == OP_VARIABLE) { + rpnp[i].op = OP_NUMBER; + rpnp[i].val = pdp_temp[rpnp[i].ptr]; + } + } + /* run the rpn calculator */ + if (rpn_calc(rpnp, &rpnstack, 0, pdp_temp, ds_idx) == -1) { + free(rpnp); + rpnstack_free(&rpnstack); + return -1; + } + free(rpnp); + } + + /* make pdp_prep ready for the next run */ + if (isnan(pdp_new[ds_idx])) { + /* this is not realy accurate if we use subsecond data arival time + should have thought of it when going subsecond resolution ... + sorry next format change we will have it! */ + scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int); + scratch[PDP_val].u_val = DNAN; + } else { + scratch[PDP_unkn_sec_cnt].u_cnt = 0; + scratch[PDP_val].u_val = pdp_new[ds_idx] / interval * post_int; + } + rpnstack_free(&rpnstack); + return 0; +} + +/* + * Iterate over all the RRAs for a given DS and: + * 1. Decide whether to schedule a smooth later + * 2. Decide whether to skip updating SEASONAL and DEVSEASONAL + * 3. Update the CDP + * + * Returns 0 on success, -1 on error + */ +static int update_all_cdp_prep( + rrd_t *rrd, + unsigned long *rra_step_cnt, + unsigned long rra_begin, + rrd_file_t *rrd_file, + unsigned long elapsed_pdp_st, + unsigned long proc_pdp_cnt, + rrd_value_t **last_seasonal_coef, + rrd_value_t **seasonal_coef, + rrd_value_t *pdp_temp, + unsigned long *skip_update, + int *schedule_smooth) +{ + unsigned long rra_idx; + + /* index into the CDP scratch array */ + enum cf_en current_cf; + unsigned long rra_start; + + /* number of rows to be updated in an RRA for a data value. */ + unsigned long start_pdp_offset; + + rra_start = rra_begin; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) { + current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam); + start_pdp_offset = + rrd->rra_def[rra_idx].pdp_cnt - + proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt; + skip_update[rra_idx] = 0; + if (start_pdp_offset <= elapsed_pdp_st) { + rra_step_cnt[rra_idx] = (elapsed_pdp_st - start_pdp_offset) / + rrd->rra_def[rra_idx].pdp_cnt + 1; + } else { + rra_step_cnt[rra_idx] = 0; + } + + if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) { + /* If this is a bulk update, we need to skip ahead in the seasonal arrays + * so that they will be correct for the next observed value; note that for + * the bulk update itself, no update will occur to DEVSEASONAL or SEASONAL; + * futhermore, HWPREDICT and DEVPREDICT will be set to DNAN. */ + if (rra_step_cnt[rra_idx] > 1) { + skip_update[rra_idx] = 1; + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st, last_seasonal_coef); + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st + 1, seasonal_coef); + } + /* periodically run a smoother for seasonal effects */ + if (do_schedule_smooth(rrd, rra_idx, elapsed_pdp_st)) { #ifdef DEBUG - if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val) && - isnan(pdp_temp[ii])) { - fprintf(stderr, - "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", - i,ii); - exit(-1); - } + fprintf(stderr, + "schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n", + rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st, + rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx]. + u_cnt); #endif - if (cur_val > cum_val) - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cur_val; - else - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cum_val; - /* initialize carry over value */ - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - break; - case CF_MINIMUM: - cum_val = IFDNAN(rrd.cdp_prep[iii].scratch[CDP_val].u_val, DINF); - cur_val = IFDNAN(pdp_temp[ii],DINF); + *schedule_smooth = 1; + } + } + if (rrd_test_error()) + return -1; + + if (update_cdp_prep + (rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt, rra_idx, + pdp_temp, *last_seasonal_coef, *seasonal_coef, + current_cf) == -1) { + return -1; + } + rra_start += + rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt * + sizeof(rrd_value_t); + } + return 0; +} + +/* + * Are we due for a smooth? Also increments our position in the burn-in cycle. + */ +static int do_schedule_smooth( + rrd_t *rrd, + unsigned long rra_idx, + unsigned long elapsed_pdp_st) +{ + unsigned long cdp_idx = rra_idx * (rrd->stat_head->ds_cnt); + unsigned long cur_row = rrd->rra_ptr[rra_idx].cur_row; + unsigned long row_cnt = rrd->rra_def[rra_idx].row_cnt; + unsigned long seasonal_smooth_idx = + rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt; + unsigned long *init_seasonal = + &(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt); + + /* Need to use first cdp parameter buffer to track burnin (burnin requires + * a specific smoothing schedule). The CDP_init_seasonal parameter is + * really an RRA level, not a data source within RRA level parameter, but + * the rra_def is read only for rrd_update (not flushed to disk). */ + if (*init_seasonal > BURNIN_CYCLES) { + /* someone has no doubt invented a trick to deal with this wrap around, + * but at least this code is clear. */ + if (seasonal_smooth_idx > cur_row) { + /* here elapsed_pdp_st = rra_step_cnt[rra_idx] because of 1-1 mapping + * between PDP and CDP */ + return (cur_row + elapsed_pdp_st >= seasonal_smooth_idx); + } + /* can't rely on negative numbers because we are working with + * unsigned values */ + return (cur_row + elapsed_pdp_st >= row_cnt + && cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx); + } + /* mark off one of the burn-in cycles */ + return (cur_row + elapsed_pdp_st >= row_cnt && ++(*init_seasonal)); +} + +/* + * For a given RRA, iterate over the data sources and call the appropriate + * consolidation function. + * + * Returns 0 on success, -1 on error. + */ +static int update_cdp_prep( + rrd_t *rrd, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long *rra_step_cnt, + int rra_idx, + rrd_value_t *pdp_temp, + rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int current_cf) +{ + unsigned long ds_idx, cdp_idx; + + /* update CDP_PREP areas */ + /* loop over data soures within each RRA */ + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + + cdp_idx = rra_idx * rrd->stat_head->ds_cnt + ds_idx; + + if (rrd->rra_def[rra_idx].pdp_cnt > 1) { + update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf, + pdp_temp[ds_idx], rra_step_cnt[rra_idx], + elapsed_pdp_st, start_pdp_offset, + rrd->rra_def[rra_idx].pdp_cnt, + rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val, + rra_idx, ds_idx); + } else { + /* Nothing to consolidate if there's one PDP per CDP. However, if + * we've missed some PDPs, let's update null counters etc. */ + if (elapsed_pdp_st > 2) { + reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef, + seasonal_coef, rra_idx, ds_idx, cdp_idx, + (enum cf_en)current_cf); + } + } + + if (rrd_test_error()) + return -1; + } /* endif data sources loop */ + return 0; +} + +/* + * Given the new reading (pdp_temp_val), update or initialize the CDP value, + * primary value, secondary value, and # of unknowns. + */ +static void update_cdp( + unival *scratch, + int current_cf, + rrd_value_t pdp_temp_val, + unsigned long rra_step_cnt, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt, + rrd_value_t xff, + int i, + int ii) +{ + /* shorthand variables */ + rrd_value_t *cdp_val = &scratch[CDP_val].u_val; + rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val; + rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val; + unsigned long *cdp_unkn_pdp_cnt = &scratch[CDP_unkn_pdp_cnt].u_cnt; + + if (rra_step_cnt) { + /* If we are in this block, as least 1 CDP value will be written to + * disk, this is the CDP_primary_val entry. If more than 1 value needs + * to be written, then the "fill in" value is the CDP_secondary_val + * entry. */ + if (isnan(pdp_temp_val)) { + *cdp_unkn_pdp_cnt += start_pdp_offset; + *cdp_secondary_val = DNAN; + } else { + /* CDP_secondary value is the RRA "fill in" value for intermediary + * CDP data entries. No matter the CF, the value is the same because + * the average, max, min, and last of a list of identical values is + * the same, namely, the value itself. */ + *cdp_secondary_val = pdp_temp_val; + } + + if (*cdp_unkn_pdp_cnt > pdp_cnt * xff) { + *cdp_primary_val = DNAN; + } else { + initialize_cdp_val(scratch, current_cf, pdp_temp_val, + start_pdp_offset, pdp_cnt); + } + *cdp_val = + initialize_carry_over(pdp_temp_val,current_cf, + elapsed_pdp_st, + start_pdp_offset, pdp_cnt); + /* endif meets xff value requirement for a valid value */ + /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val + * is set because CDP_unkn_pdp_cnt is required to compute that value. */ + if (isnan(pdp_temp_val)) + *cdp_unkn_pdp_cnt = (elapsed_pdp_st - start_pdp_offset) % pdp_cnt; + else + *cdp_unkn_pdp_cnt = 0; + } else { /* rra_step_cnt[i] == 0 */ + #ifdef DEBUG - if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val) && - isnan(pdp_temp[ii])) { - fprintf(stderr, - "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", - i,ii); - exit(-1); - } + if (isnan(*cdp_val)) { + fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, DNAN\n", + i, ii); + } else { + fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, %10.2f\n", + i, ii, *cdp_val); + } #endif - if (cur_val < cum_val) - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cur_val; - else - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cum_val; - /* initialize carry over value */ - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - break; - case CF_LAST: - default: - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = pdp_temp[ii]; - /* initialize carry over value */ - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - break; - } - } /* endif meets xff value requirement for a valid value */ - /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val - * is set because CDP_unkn_pdp_cnt is required to compute that value. */ - if (isnan(pdp_temp[ii])) - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt = - (elapsed_pdp_st - start_pdp_offset) % rrd.rra_def[i].pdp_cnt; - else - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt = 0; - } else /* rra_step_cnt[i] == 0 */ - { + if (isnan(pdp_temp_val)) { + *cdp_unkn_pdp_cnt += elapsed_pdp_st; + } else { + *cdp_val = + calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st, + current_cf, i, ii); + } + } +} + +/* + * Set the CDP_primary_val and CDP_val to the appropriate initial value based + * on the type of consolidation function. + */ +static void initialize_cdp_val( + unival *scratch, + int current_cf, + rrd_value_t pdp_temp_val, + unsigned long start_pdp_offset, + unsigned long pdp_cnt) +{ + rrd_value_t cum_val, cur_val; + + switch (current_cf) { + case CF_AVERAGE: + cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0); + cur_val = IFDNAN(pdp_temp_val, 0.0); + scratch[CDP_primary_val].u_val = + (cum_val + cur_val * start_pdp_offset) / + (pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt); + break; + case CF_MAXIMUM: + cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF); + cur_val = IFDNAN(pdp_temp_val, -DINF); + +#if 0 #ifdef DEBUG - if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val)) { - fprintf(stderr,"schedule CDP_val update, RRA %lu DS %lu, DNAN\n", - i,ii); - } else { - fprintf(stderr,"schedule CDP_val update, RRA %lu DS %lu, %10.2f\n", - i,ii,rrd.cdp_prep[iii].scratch[CDP_val].u_val); - } + if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) { + fprintf(stderr, + "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", + i, ii); + exit(-1); + } #endif - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt += elapsed_pdp_st; - } else if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val)) - { - if (current_cf == CF_AVERAGE) { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii] * - elapsed_pdp_st; - } else { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - } -#ifdef DEBUG - fprintf(stderr,"Initialize CDP_val for RRA %lu DS %lu: %10.2f\n", - i,ii,rrd.cdp_prep[iii].scratch[CDP_val].u_val); #endif - } else { - switch (current_cf) { - case CF_AVERAGE: - rrd.cdp_prep[iii].scratch[CDP_val].u_val += pdp_temp[ii] * - elapsed_pdp_st; - break; - case CF_MINIMUM: - if (pdp_temp[ii] < rrd.cdp_prep[iii].scratch[CDP_val].u_val) - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - break; - case CF_MAXIMUM: - if (pdp_temp[ii] > rrd.cdp_prep[iii].scratch[CDP_val].u_val) - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - break; - case CF_LAST: - default: - rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii]; - break; - } - } - } - } else { /* rrd.rra_def[i].pdp_cnt == 1 */ - if (elapsed_pdp_st > 2) - { - switch (current_cf) { - case CF_AVERAGE: - default: - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val=pdp_temp[ii]; - rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val=pdp_temp[ii]; - break; - case CF_SEASONAL: - case CF_DEVSEASONAL: - /* need to update cached seasonal values, so they are consistent - * with the bulk update */ - /* WARNING: code relies on the fact that CDP_hw_last_seasonal and - * CDP_last_deviation are the same. */ - rrd.cdp_prep[iii].scratch[CDP_hw_last_seasonal].u_val = - last_seasonal_coef[ii]; - rrd.cdp_prep[iii].scratch[CDP_hw_seasonal].u_val = - seasonal_coef[ii]; - break; - case CF_HWPREDICT: - /* need to update the null_count and last_null_count. - * even do this for non-DNAN pdp_temp because the - * algorithm is not learning from batch updates. */ - rrd.cdp_prep[iii].scratch[CDP_null_count].u_cnt += - elapsed_pdp_st; - rrd.cdp_prep[iii].scratch[CDP_last_null_count].u_cnt += - elapsed_pdp_st - 1; - /* fall through */ - case CF_DEVPREDICT: - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = DNAN; - rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = DNAN; - break; - case CF_FAILURES: - /* do not count missed bulk values as failures */ - rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = 0; - rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = 0; - /* need to reset violations buffer. - * could do this more carefully, but for now, just - * assume a bulk update wipes away all violations. */ - erase_violations(&rrd, iii, i); - break; - } - } - } /* endif rrd.rra_def[i].pdp_cnt == 1 */ - - if (rrd_test_error()) break; - - } /* endif data sources loop */ - } /* end RRA Loop */ - - /* this loop is only entered if elapsed_pdp_st < 3 */ - for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val; - j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) - { - for(i = 0, rra_start = rra_begin; - i < rrd.stat_head->rra_cnt; - rra_start += rrd.rra_def[i].row_cnt * rrd.stat_head -> ds_cnt * sizeof(rrd_value_t), - i++) - { - if (rrd.rra_def[i].pdp_cnt > 1) continue; - - current_cf = cf_conv(rrd.rra_def[i].cf_nam); - if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) - { - lookup_seasonal(&rrd,i,rra_start,rrd_file, - elapsed_pdp_st + (scratch_idx == CDP_primary_val ? 1 : 2), - &seasonal_coef); - rra_current = ftell(rrd_file); - } - if (rrd_test_error()) break; - /* loop over data soures within each RRA */ - for(ii = 0; - ii < rrd.stat_head->ds_cnt; - ii++) - { - update_aberrant_CF(&rrd,pdp_temp[ii],current_cf, - i*(rrd.stat_head->ds_cnt) + ii,i,ii, - scratch_idx, seasonal_coef); - } - } /* end RRA Loop */ - if (rrd_test_error()) break; - } /* end elapsed_pdp_st loop */ - - if (rrd_test_error()) break; - - /* Ready to write to disk */ - /* Move sequentially through the file, writing one RRA at a time. - * Note this architecture divorces the computation of CDP with - * flushing updated RRA entries to disk. */ - for(i = 0, rra_start = rra_begin; - i < rrd.stat_head->rra_cnt; - rra_start += rrd.rra_def[i].row_cnt * rrd.stat_head -> ds_cnt * sizeof(rrd_value_t), - i++) { - /* is there anything to write for this RRA? If not, continue. */ - if (rra_step_cnt[i] == 0) continue; - - /* write the first row */ + if (cur_val > cum_val) + scratch[CDP_primary_val].u_val = cur_val; + else + scratch[CDP_primary_val].u_val = cum_val; + break; + case CF_MINIMUM: + cum_val = IFDNAN(scratch[CDP_val].u_val, DINF); + cur_val = IFDNAN(pdp_temp_val, DINF); +#if 0 #ifdef DEBUG - fprintf(stderr," -- RRA Preseek %ld\n",ftell(rrd_file)); + if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) { + fprintf(stderr, + "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", i, + ii); + exit(-1); + } #endif - rrd.rra_ptr[i].cur_row++; - if (rrd.rra_ptr[i].cur_row >= rrd.rra_def[i].row_cnt) - rrd.rra_ptr[i].cur_row = 0; /* wrap around */ - /* positition on the first row */ - rra_pos_tmp = rra_start + - (rrd.stat_head->ds_cnt)*(rrd.rra_ptr[i].cur_row)*sizeof(rrd_value_t); - if(rra_pos_tmp != rra_current) { -#ifndef HAVE_MMAP - if(fseek(rrd_file, rra_pos_tmp, SEEK_SET) != 0){ - rrd_set_error("seek error in rrd"); - break; - } #endif - rra_current = rra_pos_tmp; - } + if (cur_val < cum_val) + scratch[CDP_primary_val].u_val = cur_val; + else + scratch[CDP_primary_val].u_val = cum_val; + break; + case CF_LAST: + default: + scratch[CDP_primary_val].u_val = pdp_temp_val; + break; + } +} +/* + * Update the consolidation function for Holt-Winters functions as + * well as other functions that don't actually consolidate multiple + * PDPs. + */ +static void reset_cdp( + rrd_t *rrd, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, + rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int rra_idx, + int ds_idx, + int cdp_idx, + enum cf_en current_cf) +{ + unival *scratch = rrd->cdp_prep[cdp_idx].scratch; + + switch (current_cf) { + case CF_AVERAGE: + default: + scratch[CDP_primary_val].u_val = pdp_temp[ds_idx]; + scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx]; + break; + case CF_SEASONAL: + case CF_DEVSEASONAL: + /* need to update cached seasonal values, so they are consistent + * with the bulk update */ + /* WARNING: code relies on the fact that CDP_hw_last_seasonal and + * CDP_last_deviation are the same. */ + scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx]; + scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx]; + break; + case CF_HWPREDICT: + case CF_MHWPREDICT: + /* need to update the null_count and last_null_count. + * even do this for non-DNAN pdp_temp because the + * algorithm is not learning from batch updates. */ + scratch[CDP_null_count].u_cnt += elapsed_pdp_st; + scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1; + /* fall through */ + case CF_DEVPREDICT: + scratch[CDP_primary_val].u_val = DNAN; + scratch[CDP_secondary_val].u_val = DNAN; + break; + case CF_FAILURES: + /* do not count missed bulk values as failures */ + scratch[CDP_primary_val].u_val = 0; + scratch[CDP_secondary_val].u_val = 0; + /* need to reset violations buffer. + * could do this more carefully, but for now, just + * assume a bulk update wipes away all violations. */ + erase_violations(rrd, cdp_idx, rra_idx); + break; + } +} + +static rrd_value_t initialize_carry_over( + rrd_value_t pdp_temp_val, + int current_cf, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt) +{ + unsigned long pdp_into_cdp_cnt = ((elapsed_pdp_st - start_pdp_offset) % pdp_cnt); + if ( pdp_into_cdp_cnt == 0 || isnan(pdp_temp_val)){ + switch (current_cf) { + case CF_MAXIMUM: + return -DINF; + case CF_MINIMUM: + return DINF; + case CF_AVERAGE: + return 0; + default: + return DNAN; + } + } + else { + switch (current_cf) { + case CF_AVERAGE: + return pdp_temp_val * pdp_into_cdp_cnt ; + default: + return pdp_temp_val; + } + } +} + +/* + * Update or initialize a CDP value based on the consolidation + * function. + * + * Returns the new value. + */ +static rrd_value_t calculate_cdp_val( + rrd_value_t cdp_val, + rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, + int current_cf, #ifdef DEBUG - fprintf(stderr," -- RRA Postseek %ld\n",ftell(rrd_file)); -#endif - scratch_idx = CDP_primary_val; - if (pcdp_summary != NULL) - { - rra_time = (current_time - current_time - % (rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step)) - - ((rra_step_cnt[i]-1)*rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step); - } -#ifdef HAVE_MMAP - pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file, - pcdp_summary, &rra_time, rrd_mmaped_file); + int i, + int ii #else - pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file, - pcdp_summary, &rra_time); + int UNUSED(i), + int UNUSED(ii) #endif - if (rrd_test_error()) break; - - /* write other rows of the bulk update, if any */ - scratch_idx = CDP_secondary_val; - for ( ; rra_step_cnt[i] > 1; rra_step_cnt[i]--) - { - if (++rrd.rra_ptr[i].cur_row == rrd.rra_def[i].row_cnt) - { + ) +{ + if (isnan(cdp_val)) { + if (current_cf == CF_AVERAGE) { + pdp_temp_val *= elapsed_pdp_st; + } #ifdef DEBUG - fprintf(stderr,"Wraparound for RRA %s, %lu updates left\n", - rrd.rra_def[i].cf_nam, rra_step_cnt[i] - 1); + fprintf(stderr, "Initialize CDP_val for RRA %d DS %d: %10.2f\n", + i, ii, pdp_temp_val); #endif - /* wrap */ - rrd.rra_ptr[i].cur_row = 0; - /* seek back to beginning of current rra */ - if (fseek(rrd_file, rra_start, SEEK_SET) != 0) - { - rrd_set_error("seek error in rrd"); - break; - } + return pdp_temp_val; + } + if (current_cf == CF_AVERAGE) + return cdp_val + pdp_temp_val * elapsed_pdp_st; + if (current_cf == CF_MINIMUM) + return (pdp_temp_val < cdp_val) ? pdp_temp_val : cdp_val; + if (current_cf == CF_MAXIMUM) + return (pdp_temp_val > cdp_val) ? pdp_temp_val : cdp_val; + + return pdp_temp_val; +} + +/* + * For each RRA, update the seasonal values and then call update_aberrant_CF + * for each data source. + * + * Return 0 on success, -1 on error. + */ +static int update_aberrant_cdps( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, + rrd_value_t **seasonal_coef) +{ + unsigned long rra_idx, ds_idx, j; + + /* number of PDP steps since the last update that + * are assigned to the first CDP to be generated + * since the last update. */ + unsigned short scratch_idx; + unsigned long rra_start; + enum cf_en current_cf; + + /* this loop is only entered if elapsed_pdp_st < 3 */ + for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val; + j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) { + rra_start = rra_begin; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) { + if (rrd->rra_def[rra_idx].pdp_cnt == 1) { + current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam); + if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) { + if (scratch_idx == CDP_primary_val) { + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st + 1, seasonal_coef); + } else { + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st + 2, seasonal_coef); + } + } + if (rrd_test_error()) + return -1; + /* loop over data soures within each RRA */ + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + update_aberrant_CF(rrd, pdp_temp[ds_idx], current_cf, + rra_idx * (rrd->stat_head->ds_cnt) + + ds_idx, rra_idx, ds_idx, scratch_idx, + *seasonal_coef); + } + } + rra_start += rrd->rra_def[rra_idx].row_cnt + * rrd->stat_head->ds_cnt * sizeof(rrd_value_t); + } + } + return 0; +} + +/* + * Move sequentially through the file, writing one RRA at a time. Note this + * architecture divorces the computation of CDP with flushing updated RRA + * entries to disk. + * + * Return 0 on success, -1 on error. + */ +static int write_to_rras( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long *rra_step_cnt, + unsigned long rra_begin, + time_t current_time, + unsigned long *skip_update, + rrd_info_t ** pcdp_summary) +{ + unsigned long rra_idx; + unsigned long rra_start; + time_t rra_time = 0; /* time of update for a RRA */ + + unsigned long ds_cnt = rrd->stat_head->ds_cnt; + + /* Ready to write to disk */ + rra_start = rra_begin; + + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) { + rra_def_t *rra_def = &rrd->rra_def[rra_idx]; + rra_ptr_t *rra_ptr = &rrd->rra_ptr[rra_idx]; + + /* for cdp_prep */ + unsigned short scratch_idx; + unsigned long step_subtract; + + for (scratch_idx = CDP_primary_val, + step_subtract = 1; + rra_step_cnt[rra_idx] > 0; + rra_step_cnt[rra_idx]--, + scratch_idx = CDP_secondary_val, + step_subtract = 2) { + + size_t rra_pos_new; #ifdef DEBUG - fprintf(stderr," -- Wraparound Postseek %ld\n",ftell(rrd_file)); + fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos); #endif - rra_current = rra_start; - } - if (pcdp_summary != NULL) - { - rra_time = (current_time - current_time - % (rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step)) - - ((rra_step_cnt[i]-2)*rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step); - } -#ifdef HAVE_MMAP - pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file, - pcdp_summary, &rra_time, rrd_mmaped_file); -#else - pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file, - pcdp_summary, &rra_time); + /* increment, with wrap-around */ + if (++rra_ptr->cur_row >= rra_def->row_cnt) + rra_ptr->cur_row = 0; + + /* we know what our position should be */ + rra_pos_new = rra_start + + ds_cnt * rra_ptr->cur_row * sizeof(rrd_value_t); + + /* re-seek if the position is wrong or we wrapped around */ + if ((size_t)rra_pos_new != rrd_file->pos) { + if (rrd_seek(rrd_file, rra_pos_new, SEEK_SET) != 0) { + rrd_set_error("seek error in rrd"); + return -1; + } + } +#ifdef DEBUG + fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos); #endif - } - - if (rrd_test_error()) - break; - } /* RRA LOOP */ - - /* break out of the argument parsing loop if error_string is set */ - if (rrd_test_error()){ - free(step_start); - break; - } - - } /* endif a pdp_st has occurred */ - rrd.live_head->last_up = current_time; - rrd.live_head->last_up_usec = current_time_usec; - free(step_start); - } /* function argument loop */ - - if (seasonal_coef != NULL) free(seasonal_coef); - if (last_seasonal_coef != NULL) free(last_seasonal_coef); - if (rra_step_cnt != NULL) free(rra_step_cnt); - rpnstack_free(&rpnstack); -#ifdef HAVE_MMAP - if (munmap(rrd_mmaped_file, rrd_filesize) == -1) { - rrd_set_error("error writing(unmapping) file: %s", filename); - } -#endif - /* if we got here and if there is an error and if the file has not been - * written to, then close things up and return. */ - if (rrd_test_error()) { - free(updvals); - free(tmpl_idx); - rrd_free(&rrd); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } + if (skip_update[rra_idx]) + continue; - /* aargh ... that was tough ... so many loops ... anyway, its done. - * we just need to write back the live header portion now*/ - - if (fseek(rrd_file, (sizeof(stat_head_t) - + sizeof(ds_def_t)*rrd.stat_head->ds_cnt - + sizeof(rra_def_t)*rrd.stat_head->rra_cnt), - SEEK_SET) != 0) { - rrd_set_error("seek rrd for live header writeback"); - free(updvals); - free(tmpl_idx); - rrd_free(&rrd); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } + if (*pcdp_summary != NULL) { + unsigned long step_time = rra_def->pdp_cnt * rrd->stat_head->pdp_step; - if(version >= 3) { - if(fwrite( rrd.live_head, - sizeof(live_head_t), 1, rrd_file) != 1){ - rrd_set_error("fwrite live_head to rrd"); - free(updvals); - rrd_free(&rrd); - free(tmpl_idx); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } - } - else { - if(fwrite( &rrd.live_head->last_up, - sizeof(time_t), 1, rrd_file) != 1){ - rrd_set_error("fwrite live_head to rrd"); - free(updvals); - rrd_free(&rrd); - free(tmpl_idx); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } - } - - - if(fwrite( rrd.pdp_prep, - sizeof(pdp_prep_t), - rrd.stat_head->ds_cnt, rrd_file) != rrd.stat_head->ds_cnt){ - rrd_set_error("ftwrite pdp_prep to rrd"); - free(updvals); - rrd_free(&rrd); - free(tmpl_idx); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } + rra_time = (current_time - current_time % step_time) + - ((rra_step_cnt[rra_idx] - step_subtract) * step_time); + } - if(fwrite( rrd.cdp_prep, - sizeof(cdp_prep_t), - rrd.stat_head->rra_cnt *rrd.stat_head->ds_cnt, rrd_file) - != rrd.stat_head->rra_cnt *rrd.stat_head->ds_cnt){ - - rrd_set_error("ftwrite cdp_prep to rrd"); - free(updvals); - free(tmpl_idx); - rrd_free(&rrd); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } + if (write_RRA_row + (rrd_file, rrd, rra_idx, scratch_idx, + pcdp_summary, rra_time) == -1) + return -1; - if(fwrite( rrd.rra_ptr, - sizeof(rra_ptr_t), - rrd.stat_head->rra_cnt,rrd_file) != rrd.stat_head->rra_cnt){ - rrd_set_error("fwrite rra_ptr to rrd"); - free(updvals); - free(tmpl_idx); - rrd_free(&rrd); - free(pdp_temp); - free(pdp_new); - fclose(rrd_file); - return(-1); - } + rrd_notify_row(rrd_file, rra_idx, rra_pos_new, rra_time); + } - /* OK now close the files and free the memory */ - if(fclose(rrd_file) != 0){ - rrd_set_error("closing rrd"); - free(updvals); - free(tmpl_idx); - rrd_free(&rrd); - free(pdp_temp); - free(pdp_new); - return(-1); - } + rra_start += rra_def->row_cnt * ds_cnt * sizeof(rrd_value_t); + } /* RRA LOOP */ - /* calling the smoothing code here guarantees at most - * one smoothing operation per rrd_update call. Unfortunately, - * it is possible with bulk updates, or a long-delayed update - * for smoothing to occur off-schedule. This really isn't - * critical except during the burning cycles. */ - if (schedule_smooth) - { - rrd_file = fopen(filename,"rb+"); - rra_start = rra_begin; - for (i = 0; i < rrd.stat_head -> rra_cnt; ++i) - { - if (cf_conv(rrd.rra_def[i].cf_nam) == CF_DEVSEASONAL || - cf_conv(rrd.rra_def[i].cf_nam) == CF_SEASONAL) - { + return 0; +} + +/* + * Write out one row of values (one value per DS) to the archive. + * + * Returns 0 on success, -1 on error. + */ +static int write_RRA_row( + rrd_file_t *rrd_file, + rrd_t *rrd, + unsigned long rra_idx, + unsigned short CDP_scratch_idx, + rrd_info_t ** pcdp_summary, + time_t rra_time) +{ + unsigned long ds_idx, cdp_idx; + rrd_infoval_t iv; + + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + /* compute the cdp index */ + cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx; #ifdef DEBUG - fprintf(stderr,"Running smoother for rra %ld\n",i); + fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n", + rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val, + rrd_file->pos, rrd->rra_def[rra_idx].cf_nam); #endif - apply_smoother(&rrd,i,rra_start,rrd_file); - if (rrd_test_error()) - break; - } - rra_start += rrd.rra_def[i].row_cnt - *rrd.stat_head->ds_cnt*sizeof(rrd_value_t); - } - fclose(rrd_file); - } - rrd_free(&rrd); - free(updvals); - free(tmpl_idx); - free(pdp_new); - free(pdp_temp); - return(0); + if (*pcdp_summary != NULL) { + iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val; + /* append info to the return hash */ + *pcdp_summary = rrd_info_push(*pcdp_summary, + sprintf_alloc + ("[%lli]RRA[%s][%lu]DS[%s]", + (long long)rra_time, + rrd->rra_def[rra_idx].cf_nam, + rrd->rra_def[rra_idx].pdp_cnt, + rrd->ds_def[ds_idx].ds_nam), + RD_I_VAL, iv); + } + errno = 0; + if (rrd_write(rrd_file, + &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx]. + u_val), sizeof(rrd_value_t)) != sizeof(rrd_value_t)) { + rrd_set_error("writing rrd: %s", rrd_strerror(errno)); + return -1; + } + } + return 0; } /* - * get exclusive lock to whole file. - * lock gets removed when we close the file + * Call apply_smoother for all DEVSEASONAL and SEASONAL RRAs. * - * returns 0 on success + * Returns 0 on success, -1 otherwise */ -int -LockRRD(FILE *rrdfile) +static int smooth_all_rras( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin) { - int rrd_fd; /* File descriptor for RRD */ - int rcstat; - - rrd_fd = fileno(rrdfile); + unsigned long rra_start = rra_begin; + unsigned long rra_idx; - { -#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__) - struct _stat st; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; ++rra_idx) { + if (cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_DEVSEASONAL || + cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) { +#ifdef DEBUG + fprintf(stderr, "Running smoother for rra %lu\n", rra_idx); +#endif + apply_smoother(rrd, rra_idx, rra_start, rrd_file); + if (rrd_test_error()) + return -1; + } + rra_start += rrd->rra_def[rra_idx].row_cnt + * rrd->stat_head->ds_cnt * sizeof(rrd_value_t); + } + return 0; +} - if ( _fstat( rrd_fd, &st ) == 0 ) { - rcstat = _locking ( rrd_fd, _LK_NBLCK, st.st_size ); +#ifndef HAVE_MMAP +/* + * Flush changes to disk (unless we're using mmap) + * + * Returns 0 on success, -1 otherwise + */ +static int write_changes_to_disk( + rrd_t *rrd, + rrd_file_t *rrd_file, + int version) +{ + /* we just need to write back the live header portion now */ + if (rrd_seek(rrd_file, (sizeof(stat_head_t) + + sizeof(ds_def_t) * rrd->stat_head->ds_cnt + + sizeof(rra_def_t) * rrd->stat_head->rra_cnt), + SEEK_SET) != 0) { + rrd_set_error("seek rrd for live header writeback"); + return -1; + } + if (version >= 3) { + if (rrd_write(rrd_file, rrd->live_head, + sizeof(live_head_t) * 1) != sizeof(live_head_t) * 1) { + rrd_set_error("rrd_write live_head to rrd"); + return -1; + } } else { - rcstat = -1; + if (rrd_write(rrd_file, rrd->legacy_last_up, + sizeof(time_t) * 1) != sizeof(time_t) * 1) { + rrd_set_error("rrd_write live_head to rrd"); + return -1; + } } -#else - struct flock lock; - lock.l_type = F_WRLCK; /* exclusive write lock */ - lock.l_len = 0; /* whole file */ - lock.l_start = 0; /* start of file */ - lock.l_whence = SEEK_SET; /* end of file */ - rcstat = fcntl(rrd_fd, F_SETLK, &lock); -#endif - } - return(rcstat); -} + if (rrd_write(rrd_file, rrd->pdp_prep, + sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt) + != (ssize_t) (sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)) { + rrd_set_error("rrd_write pdp_prep to rrd"); + return -1; + } + if (rrd_write(rrd_file, rrd->cdp_prep, + sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt * + rrd->stat_head->ds_cnt) + != (ssize_t) (sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt * + rrd->stat_head->ds_cnt)) { -#ifdef HAVE_MMAP -info_t -*write_RRA_row (rrd_t *rrd, unsigned long rra_idx, unsigned long *rra_current, - unsigned short CDP_scratch_idx, -#ifndef DEBUG -FILE UNUSED(*rrd_file), -#else -FILE *rrd_file, -#endif - info_t *pcdp_summary, time_t *rra_time, void *rrd_mmaped_file) -#else -info_t -*write_RRA_row (rrd_t *rrd, unsigned long rra_idx, unsigned long *rra_current, - unsigned short CDP_scratch_idx, FILE *rrd_file, - info_t *pcdp_summary, time_t *rra_time) -#endif -{ - unsigned long ds_idx, cdp_idx; - infoval iv; - - for (ds_idx = 0; ds_idx < rrd -> stat_head -> ds_cnt; ds_idx++) - { - /* compute the cdp index */ - cdp_idx =rra_idx * (rrd -> stat_head->ds_cnt) + ds_idx; -#ifdef DEBUG - fprintf(stderr," -- RRA WRITE VALUE %e, at %ld CF:%s\n", - rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val,ftell(rrd_file), - rrd -> rra_def[rra_idx].cf_nam); -#endif - if (pcdp_summary != NULL) - { - iv.u_val = rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val; - /* append info to the return hash */ - pcdp_summary = info_push(pcdp_summary, - sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]", - *rra_time, rrd->rra_def[rra_idx].cf_nam, - rrd->rra_def[rra_idx].pdp_cnt, rrd->ds_def[ds_idx].ds_nam), - RD_I_VAL, iv); - } -#ifdef HAVE_MMAP - memcpy((char *)rrd_mmaped_file + *rra_current, - &(rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val), - sizeof(rrd_value_t)); -#else - if(fwrite(&(rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val), - sizeof(rrd_value_t),1,rrd_file) != 1) - { - rrd_set_error("writing rrd"); - return 0; - } -#endif - *rra_current += sizeof(rrd_value_t); - } - return (pcdp_summary); + rrd_set_error("rrd_write cdp_prep to rrd"); + return -1; + } + + if (rrd_write(rrd_file, rrd->rra_ptr, + sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt) + != (ssize_t) (sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)) { + rrd_set_error("rrd_write rra_ptr to rrd"); + return -1; + } + return 0; } +#endif