2 * collectd - src/utils_latency.c
3 * Copyright (C) 2013 Florian Forster
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Florian Forster <ff at octo.it>
30 #include "utils_latency.h"
37 # define LLONG_MAX 9223372036854775807LL
40 #ifndef HISTOGRAM_DEFAULT_BIN_WIDTH
41 /* 1048576 = 2^20 ^= 1/1024 s */
42 # define HISTOGRAM_DEFAULT_BIN_WIDTH 1048576
45 struct latency_counter_s
56 int histogram[HISTOGRAM_NUM_BINS];
60 * Histogram represents the distribution of data, it has a list of "bins".
61 * Each bin represents an interval and has a count (frequency) of
62 * number of values fall within its interval.
64 * Histogram's range is determined by the number of bins and the bin width,
65 * There are 1000 bins and all bins have the same width of default 1 millisecond.
66 * When a value above this range is added, Histogram's range is increased by
67 * increasing the bin width (note that number of bins remains always at 1000).
68 * This operation of increasing bin width is little expensive as each bin need
69 * to be visited to update it's count. To reduce frequent change of bin width,
70 * new bin width will be the next nearest power of 2. Example: 2, 4, 8, 16, 32,
71 * 64, 128, 256, 512, 1024, 2048, 5086, ...
73 * So, if the required bin width is 300, then new bin width will be 512 as it is
74 * the next nearest power of 2.
76 static void change_bin_width (latency_counter_t *lc, cdtime_t latency) /* {{{ */
78 /* This function is called because the new value is above histogram's range.
79 * First find the required bin width:
80 * requiredBinWidth = (value + 1) / numBins
81 * then get the next nearest power of 2
82 * newBinWidth = 2^(ceil(log2(requiredBinWidth)))
84 double required_bin_width = ((double) (latency + 1)) / ((double) HISTOGRAM_NUM_BINS);
85 double required_bin_width_logbase2 = log (required_bin_width) / log (2.0);
86 cdtime_t new_bin_width = (cdtime_t) (pow (2.0, ceil (required_bin_width_logbase2)) + .5);
87 cdtime_t old_bin_width = lc->bin_width;
89 lc->bin_width = new_bin_width;
91 /* bin_width has been increased, now iterate through all bins and move the
92 * old bin's count to new bin. */
93 if (lc->num > 0) // if the histogram has data then iterate else skip
95 double width_change_ratio = ((double) old_bin_width) / ((double) new_bin_width);
97 for (size_t i = 0; i < HISTOGRAM_NUM_BINS; i++)
99 size_t new_bin = (size_t) (((double) i) * width_change_ratio);
102 assert (new_bin < i);
104 lc->histogram[new_bin] += lc->histogram[i];
105 lc->histogram[i] = 0;
109 DEBUG("utils_latency: change_bin_width: latency = %.3f; "
110 "old_bin_width = %.3f; new_bin_width = %.3f;",
111 CDTIME_T_TO_DOUBLE (latency),
112 CDTIME_T_TO_DOUBLE (old_bin_width),
113 CDTIME_T_TO_DOUBLE (new_bin_width));
114 } /* }}} void change_bin_width */
116 latency_counter_t *latency_counter_create (void) /* {{{ */
118 latency_counter_t *lc;
120 lc = calloc (1, sizeof (*lc));
124 lc->bin_width = HISTOGRAM_DEFAULT_BIN_WIDTH;
125 latency_counter_reset (lc);
127 } /* }}} latency_counter_t *latency_counter_create */
129 void latency_counter_destroy (latency_counter_t *lc) /* {{{ */
132 } /* }}} void latency_counter_destroy */
134 void latency_counter_add (latency_counter_t *lc, cdtime_t latency) /* {{{ */
138 if ((lc == NULL) || (latency == 0) || (latency > ((cdtime_t) LLONG_MAX)))
144 if ((lc->min == 0) && (lc->max == 0))
145 lc->min = lc->max = latency;
146 if (lc->min > latency)
148 if (lc->max < latency)
151 /* A latency of _exactly_ 1.0 ms is stored in the buffer 0, so
152 * subtract one from the cdtime_t value so that exactly 1.0 ms get sorted
154 bin = (latency - 1) / lc->bin_width;
155 if (bin >= HISTOGRAM_NUM_BINS)
157 change_bin_width (lc, latency);
158 bin = (latency - 1) / lc->bin_width;
159 if (bin >= HISTOGRAM_NUM_BINS)
161 ERROR ("utils_latency: latency_counter_add: Invalid bin: %"PRIu64, bin);
165 lc->histogram[bin]++;
166 } /* }}} void latency_counter_add */
168 void latency_counter_reset (latency_counter_t *lc) /* {{{ */
173 cdtime_t bin_width = lc->bin_width;
174 cdtime_t max_bin = (lc->max - 1) / lc->bin_width;
177 If max latency is REDUCE_THRESHOLD times less than histogram's range,
178 then cut it in half. REDUCE_THRESHOLD must be >= 2.
179 Value of 4 is selected to reduce frequent changes of bin width.
181 #define REDUCE_THRESHOLD 4
182 if ((lc->num > 0) && (lc->bin_width >= HISTOGRAM_DEFAULT_BIN_WIDTH * 2)
183 && (max_bin < HISTOGRAM_NUM_BINS / REDUCE_THRESHOLD))
185 /* new bin width will be the previous power of 2 */
186 bin_width = bin_width / 2;
188 DEBUG("utils_latency: latency_counter_reset: max_latency = %.3f; "
189 "max_bin = %"PRIu64"; old_bin_width = %.3f; new_bin_width = %.3f;",
190 CDTIME_T_TO_DOUBLE (lc->max),
192 CDTIME_T_TO_DOUBLE (lc->bin_width),
193 CDTIME_T_TO_DOUBLE (bin_width));
196 memset (lc, 0, sizeof (*lc));
198 /* preserve bin width */
199 lc->bin_width = bin_width;
200 lc->start_time = cdtime ();
201 } /* }}} void latency_counter_reset */
203 cdtime_t latency_counter_get_min (latency_counter_t *lc) /* {{{ */
208 } /* }}} cdtime_t latency_counter_get_min */
210 cdtime_t latency_counter_get_max (latency_counter_t *lc) /* {{{ */
215 } /* }}} cdtime_t latency_counter_get_max */
217 cdtime_t latency_counter_get_sum (latency_counter_t *lc) /* {{{ */
222 } /* }}} cdtime_t latency_counter_get_sum */
224 size_t latency_counter_get_num (latency_counter_t *lc) /* {{{ */
229 } /* }}} size_t latency_counter_get_num */
231 cdtime_t latency_counter_get_average (latency_counter_t *lc) /* {{{ */
235 if ((lc == NULL) || (lc->num == 0))
238 average = CDTIME_T_TO_DOUBLE (lc->sum) / ((double) lc->num);
239 return (DOUBLE_TO_CDTIME_T (average));
240 } /* }}} cdtime_t latency_counter_get_average */
242 cdtime_t latency_counter_get_percentile (latency_counter_t *lc, /* {{{ */
245 double percent_upper;
246 double percent_lower;
248 cdtime_t latency_lower;
249 cdtime_t latency_interpolated;
253 if ((lc == NULL) || (lc->num == 0) || !((percent > 0.0) && (percent < 100.0)))
256 /* Find index i so that at least "percent" events are within i+1 ms. */
260 for (i = 0; i < HISTOGRAM_NUM_BINS; i++)
262 percent_lower = percent_upper;
263 sum += lc->histogram[i];
267 percent_upper = 100.0 * ((double) sum) / ((double) lc->num);
269 if (percent_upper >= percent)
273 if (i >= HISTOGRAM_NUM_BINS)
276 assert (percent_upper >= percent);
277 assert (percent_lower < percent);
280 return (lc->bin_width);
282 latency_lower = ((cdtime_t) i) * lc->bin_width;
283 p = (percent - percent_lower) / (percent_upper - percent_lower);
285 latency_interpolated = latency_lower
286 + DOUBLE_TO_CDTIME_T (p * CDTIME_T_TO_DOUBLE (lc->bin_width));
288 DEBUG ("latency_counter_get_percentile: latency_interpolated = %.3f",
289 CDTIME_T_TO_DOUBLE (latency_interpolated));
290 return (latency_interpolated);
291 } /* }}} cdtime_t latency_counter_get_percentile */
293 double latency_counter_get_rate(const latency_counter_t *lc, /* {{{ */
294 cdtime_t lower, cdtime_t upper,
295 const cdtime_t now) {
296 if ((lc == NULL) || (lc->num == 0))
299 if (upper && (upper < lower))
304 /* Buckets have an exclusive lower bound and an inclusive upper bound. That
305 * means that the first bucket, index 0, represents (0-bin_width]. That means
306 * that latency==bin_width needs to result in bin=0, that's why we need to
307 * subtract one before dividing by bin_width. */
308 cdtime_t lower_bin = 0;
310 /* lower is *exclusive* => determine bucket for lower+1 */
311 lower_bin = ((lower + 1) - 1) / lc->bin_width;
313 /* lower is greater than the longest latency observed => rate is zero. */
314 if (lower_bin >= HISTOGRAM_NUM_BINS)
317 cdtime_t upper_bin = HISTOGRAM_NUM_BINS - 1;
319 upper_bin = (upper - 1) / lc->bin_width;
321 if (upper_bin >= HISTOGRAM_NUM_BINS) {
322 upper_bin = HISTOGRAM_NUM_BINS - 1;
327 for (size_t i = lower_bin; i <= upper_bin; i++)
328 sum += lc->histogram[i];
331 /* Approximate ratio of requests in lower_bin, that fall between
332 * lower_bin_boundary and lower. This ratio is then subtracted from sum to
333 * increase accuracy. */
334 cdtime_t lower_bin_boundary = lower_bin * lc->bin_width;
335 assert(lower >= lower_bin_boundary);
337 (double)(lower - lower_bin_boundary) / ((double)lc->bin_width);
338 sum -= lower_ratio * lc->histogram[lower_bin];
342 /* As above: approximate ratio of requests in upper_bin, that fall between
343 * upper and upper_bin_boundary. */
344 cdtime_t upper_bin_boundary = (upper_bin + 1) * lc->bin_width;
345 assert(upper <= upper_bin_boundary);
346 double ratio = (double)(upper_bin_boundary - upper) / (double)lc->bin_width;
347 sum -= ratio * lc->histogram[upper_bin];
350 return sum / (CDTIME_T_TO_DOUBLE(now - lc->start_time));
351 } /* }}} double latency_counter_get_rate */
353 /* vim: set sw=2 sts=2 et fdm=marker : */