Neue Grafik "markov-cycles-16".
[diplomarbeit.git] / diplomarbeit.tex
index 39ad37d..2f8aed2 100644 (file)
@@ -228,34 +228,35 @@ beschäftigen.
 
 Viele {\em kombinatorische Optimierungsprobleme} sind schwer zu lösen -- die
 entsprechenden Entscheidungsprobleme liegen oft in der Komplexitätsklasse
-$NP$, sind also mit bekannten Verfahren nicht effizient exakt lösbar. Sollte
-sich herausstellen, dass diese Probleme nicht in der Komplexitätsklasse $P$
-liegen, wäre eine Konsequenz, dass es effiziente exakte Algorithmen für diese
-Probleme nicht geben kann. Falls sich hingegen herausstellt, dass diese
-Probleme in der Komplexitätsklasse~$P$ liegen, wird es mit großer
-Wahrscheinlichkeit noch einige Zeit dauern bis auch Algorithmen mit
-praktikablen Zeitkonstanten gefunden werden.
+\textit{NP}, das heißt das keine Verfahren bekannt sind, die das Problem
+effizient exakt lösbar. Sollte sich herausstellen, dass diese Probleme nicht
+in der Komplexitätsklasse~\textit{P} liegen, wäre eine Konsequenz, dass es
+effiziente exakte Algorithmen für diese Probleme nicht geben kann. Falls sich
+hingegen herausstellt, dass diese Probleme in der
+Komplexitätsklasse~\textit{P} liegen, wird es mit großer Wahrscheinlichkeit
+noch einige Zeit dauern, bis auch Algorithmen mit praktikablen Zeitkonstanten
+gefunden werden.
 
 Aus diesem Grund besteht die Notwendigkeit einen Kompromiss einzugehen: Statt
-die bzw. eine der {\em optimalen} Lösungen als einzige Ausgabe des Algorithmus
-zuzulassen, wird eine "`möglichst gute"' Lösung ausgegeben. Viele dieser
-Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur,
-beispielsweise immitieren die "`Ameisenalgorithmen"' das Verhalten von Ameisen
+die beziehungsweise eine der {\em optimalen} Lösungen als einzige Ausgabe des
+Algorithmus zuzulassen, wird eine "`möglichst gute"' Lösung ausgegeben. Viele
+dieser Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur,
+beispielsweise imitieren die "`Ameisenalgorithmen"' das Verhalten von Ameisen
 auf der Futtersuche um kurze Rundreisen auf Graphen zu berechnen.
 
 Bei {\em Evolutionären Algorithmen} stand die Evolution pate. Die Grundidee
-ist es, bestehende Lösungen zu neuen, unter Umständen besseren Lösungen zu
+ist, bekannte Lösungen zu neuen -- unter Umständen besseren -- Lösungen zu
 kombinieren. Dabei bedient man sich der in der Evolutionstheorie etablierten
-Nomenklatur, beispielsweise werden konkrete Lösungen für ein Problem häufig
-als {\em Individuum} bezeichnet.
+Nomenklatur, beispielsweise werden konkrete Lösungen für ein Problem als {\em
+Individuen} bezeichnet.
 
 Die Vorgehensweise lässt sich abstrakt wie folgt beschreiben. Aus einer
-bestehenden Lösungsmenge, der {\em Population} werden zufällig Lösungen
+bestehenden Lösungsmenge, der {\em Population}, werden zufällig Lösungen
 ausgesucht {\em (Selektion)} und zu einer neuen Lösung kombiniert ({\em
 Rekombination}). Unter Umständen wird die neue Lösung noch zufällig
 verändert {\em (Mutation)}, bevor sie in die bestehende Lösungsmenge
-integriert wird. Die Wahrscheinlichkeiten, beispielsweise bei der {\em
-Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
+eingefügt wird. Die verwendeten Wahrscheinlichkeiten, beispielsweise bei der
+{\em Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
 werden bessere Lösungen bevorzugt. Zur Bewertung dient die sogenannte {\em
 Gütefunktion}.
 
@@ -686,7 +687,7 @@ benötigt werden.
 Das \emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(n)$ besteht --~wie
 das \emph{bitone Mergesort-Netzwerk}~-- rekursiv aus kleineren Varianten von
 sich selbst und einem abschließenden \emph{Odd-Even-Mischer}. Die
-effizientesten Sortiernetzwerke in Bezuf auf Komparator- und Schichtzahl
+effizientesten Sortiernetzwerke in Bezug auf Komparator- und Schichtzahl
 entstehen, wenn die Anzahl der Leitungen jeweils halbiert wird. Somit besteht
 $\operatorname{OES}(n)$ aus
 $\operatorname{OES}\left(\left\lceil\frac{n}{2}\right\rceil\right)$,
@@ -716,7 +717,7 @@ die rekursiven Instanzen von $\operatorname{OEM}(4)$, der grüne Block markiert
 die Komparatoren, die in ersten Rekursionsschritt hinzugefügt werden.
 
 Im Allgemeinen ist die Anzahl der Komparatoren, die vom
-\emph{Odd-Even-Mergesort-Netzwerk} verwendet wird, $k(n)$, direkt aus der
+\emph{Odd-Even-Mergesort-Netz\-werk} verwendet wird, $k(n)$, direkt aus der
 Definition beziehungsweise der Konstruktionsanleitung abzulesen:
 \begin{displaymath}
   k(n) = k\left(\left\lceil\frac{n}{2}\right\rceil\right)
@@ -750,16 +751,24 @@ gilt.
 
 \subsection{Komprimieren}
 
-\todo{Aus theoretischer Sicht eigentlich eine Trivialität. Rausschmeißen?}
-
 Komparatoren, die unterschiedliche Leitungen miteinander vergleichen, können
 gleichzeitig ausgewertet werden, wie bereits in
-Abschnitt~\ref{sect:einleitung_sortiernetzwerke} beschrieben. Unter
-\emph{Komprimieren} wird eine (Neu-)Gruppierung in die kleinstmögliche Anzahl
-von \emph{Schichten} verstanden.
+Abschnitt~\ref{sect:einleitung_sortiernetzwerke} beschrieben. Durch manche
+Transformationen, insbesondere das Entfernen einer Leitung, das in
+Abschnitt~\ref{sect:leitungen_entfernen} beschrieben wird, kann es vorkommen,
+dass die Komparatoren eines Sortiernetzwerks nicht mehr in der
+kleinstmöglichen Anzahl von \emph{Schichten} angeordnet sind. Unter
+\emph{Komprimierung} wird eine (Neu-)Gruppierung der Komparatoren verstanden,
+die jeden Komparator so früh wie möglich ausführt. So entsteht die
+kleinstmögliche Anzahl von \emph{Schichten}, in die sich ein Sortiernetzwerk
+unterteilen lässt.
 
 Diese Anzahl ist insbesondere beim automatisierten Bewerten von
-Komparatornetzwerken interessant. \dots
+Komparatornetzwerken interessant, wie in Abschnitt~\ref{sect:bewertung}
+beschrieben. Die Anzahl der Schichten kann künstlich vergrößert werden, indem
+Komparatoren später angewandt werden. Deshalb sollte vor einer Bewertung, die
+die Anzahl der Schichten als Bewertungskriterium verwendet, immer eine
+Komprimierung durchgeführt werden.
 
 \subsection{Normalisieren}
 
@@ -776,8 +785,8 @@ Komparatornetzwerken interessant. \dots
 Ein \emph{Standard-Sortiernetzwerk} oder \emph{normalisiertes Sortiernetzwerk}
 ist ein Sortiernetzwerk, dessen Komparatoren alle in die selbe Richtung
 zeigen. Jedes Sortiernetzwerk kann in eine normaliesierte Variante
-transformiert werden. Dazu gibt beispielsweise \emph{Knuth} (\todo{Verweis})
-einen Algorithmus an.
+transformiert werden. Dazu gibt beispielsweise \emph{Donald~E. Knuth}
+in~\cite{KNUTH} einen Algorithmus an.
 
 Abbildung~\ref{fig:beispiel_normalisieren} zeigt das das
 bitone Sortiernetzwerk in zwei Varianten. Abbildung~\ref{fig:bitonic-nonstd}
@@ -861,7 +870,8 @@ nur mit exponentiellem Aufwand möglich ist.
 %\item Nach dem Pairwise sorting-network Schema.
 %\end{itemize}
 
-\subsection{Leitungen entfernen}\label{sect:leitungen_entfernen}
+\subsection{Leitungen entfernen}
+\label{sect:leitungen_entfernen}
 
 Im vorherigen Abschnitt haben wir gesehen, dass es mithilfe von
 \emph{Mischern} möglich ist, aus zwei Sortiernetzwerken mit je $n$~Eingängen
@@ -1002,7 +1012,7 @@ sich die Resultate auch in der ersten Schicht nicht unterscheiden.
 
 \begin{figure}
   \begin{center}
-    \includegraphics[viewport=0 0 360 216,width=15cm]{images/count-cuts-16.pdf}
+    \includegraphics[viewport=0 0 425 262,width=15cm]{images/count-cuts-16.pdf}
   \end{center}
   \caption{Anzahl der \emph{unterschiedlichen} Sortiernetzwerke, die durch
   8-Schnittmuster aus $\operatorname{OES}(16)$, $\operatorname{BS}(16)$ und
@@ -1184,21 +1194,21 @@ Algorithmus vorschnell in Richtung eines lokalen Optimums optimiert.
 Die in \textsc{SN-Evolution} implementierte Selektion lässt sich mithilfe von
 Pseudocode wie folgt beschreiben:
 \begin{verbatim}
-Guetesumme := 0
+Gütesumme := 0
 Auswahl := (leer)
 
-fuer jedes Individuum in Population
+für jedes Individuum in Population
 {
-  reziproke Guete := 1.0 / Guete(Individuum)
-  Wahrscheinlichkeit P := reziproke Guete / (reziproke Guete + Guetesumme)
-  Guetesumme := Guetesumme + reziproke Guete
+  reziproke Güte := 1.0 / Guete(Individuum)
+  Wahrscheinlichkeit P := reziproke Güte / (reziproke Güte + Gütesumme)
+  Gütesumme := Gütesumme + reziproke Güte
 
   mit Wahrscheinlichkeit P
   {
     Auswahl := Individuum
   }
 }
-gebe Auswahl zurueck
+gib Auswahl zurück
 \end{verbatim}
 
 \subsection{Rekombination}
@@ -1533,13 +1543,17 @@ gegebenen Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu
 gelangen, rekombiniert der Algorithmus das aktuelle Sortiernetzwerk mit sich
 selbst und erhält so einen zufälligen Nachfolger.
 
-\begin{itemize}
-  \item $n \leftarrow \mathrm{Input}$
-  \item \texttt{while} \textit{true}
-  \begin{itemize}
-    \item $n \leftarrow \operatorname{recombine} (n, n)$
-  \end{itemize}
-\end{itemize}
+\begin{verbatim}
+  Netzwerk := Eingabe
+
+  für n Iterationen
+  {
+    Nachfolger := kombiniere (Netzwerk, Netzwerk)
+    Netzwerk   := Nachfolger
+  }
+
+  gib Netzwerk zurück
+\end{verbatim}
 
 \begin{itemize}
   \item Beste erreichte Netzwerke (gleich zu \emph{OE-Mergesort}).
@@ -1550,7 +1564,7 @@ selbst und erhält so einen zufälligen Nachfolger.
 
 \begin{figure}
   \begin{center}
-  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-12-pct.pdf}
+  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-12-pct.pdf}
   \end{center}
   \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 12~Leitungen),
   die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
@@ -1560,7 +1574,7 @@ selbst und erhält so einen zufälligen Nachfolger.
 
 \begin{figure}
   \begin{center}
-  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-14-pct.pdf}
+  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-14-pct.pdf}
   \end{center}
   \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 14~Leitungen),
   die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
@@ -1570,7 +1584,7 @@ selbst und erhält so einen zufälligen Nachfolger.
 
 \begin{figure}
   \begin{center}
-  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-16-pct.pdf}
+  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-16-pct.pdf}
   \end{center}
   \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 16~Leitungen),
   die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
@@ -1578,6 +1592,16 @@ selbst und erhält so einen zufälligen Nachfolger.
   \label{fig:markov-comparators-16}
 \end{figure}
 
+\begin{figure}
+  \begin{center}
+  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-18-pct.pdf}
+  \end{center}
+  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 18~Leitungen),
+  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+  \emph{Gamma-Verteilung} $f(x - 81)$ mit $k = 10,724$ und $\theta = 0,766$.}
+  \label{fig:markov-comparators-18}
+\end{figure}
+
 \newpage
 \section{Empirische Beobachtungen}