SN-Evolution-Cut: PS: Ausgebaut.
[diplomarbeit.git] / diplomarbeit.tex
index a2550ab..2a8eff5 100644 (file)
@@ -496,7 +496,7 @@ sortierte Listen zusammenfügen (Englisch: \textit{to~merge}) kann. Dieser
 verleiht dem Sortiernetzwerk seinen Namen.
 
 Da das Sortiernetzwerk rekursiv definiert ist, betrachten wir hier nur die
-Instanzen des Netzwerks, deren Leitungszahl $n = 2^t$ eine Zweierpotenz ist.
+Instanzen des Netzwerks, deren Leitungszahl $n = 2^d$ eine Zweierpotenz ist.
 Es ist jedoch möglich, das Sortiernetzwerk für beliebige~$n$ zu erzeugen.
 
 \subsubsection{Der bitone Mischer}\label{sect:der_bitone_mischer}
@@ -776,7 +776,7 @@ Leider ist es schwierig, diese allgemeine Formel in einer geschlossenen Form
 anzugeben. Aus der Anzahl der Rekursionsschritte ist jedoch leicht erkennbar,
 dass $K(n,m)$ in $\Theta(N \log (N))$ enthalten ist.
 
-Für den wichtigen Spezialfall, dass $n = m = 2^{t-1}$ beträgt, lässt sich die
+Für den wichtigen Spezialfall, dass $n = m = 2^{d-1}$ beträgt, lässt sich die
 Anzahl der Komparatoren im Vergleich zum \emph{bitonen Mischer} angeben: Der
 erste Rekursionsschritt der OEM-Konstruktion fügt
 $\left\lfloor \frac{1}{2} (m + n - 1) \right\rfloor = \frac{N}{2} - 1$
@@ -790,9 +790,9 @@ einschließlich $\operatorname{OEM}(2, 2)$, von denen es $2, 4, \dots,
 \end{displaymath}
 Komparatoren eingespart. Damit ergibt sich
 \begin{displaymath}
-  K\left(n = 2^{t-1}, n = 2^{t-1}\right) = \frac{1}{2} N \log(N) - \frac{N}{2} + 1
+  K\left(n = 2^{d-1}, n = 2^{d-1}\right) = \frac{1}{2} N \log(N) - \frac{N}{2} + 1
 \end{displaymath}
-für die Anzahl der Komparatoren, die von $\operatorname{OEM}(N = 2^t)$
+für die Anzahl der Komparatoren, die von $\operatorname{OEM}(N = 2^d)$
 benötigt werden.
 
 \subsubsection{Das Odd-Even-Mergesort-Netzwerk}
@@ -840,11 +840,11 @@ geschlossene Darstellung von $k(n)$ ebenfalls nicht ohne weiteres möglich. Es
 ist allerdings bekannt, dass $k(n)$ in $\Theta\left(n \left(\log
 (n)\right)^2\right)$ enthalten ist.
 
-Für den wichtigen Spezialfall, dass $n = 2^t$ eine Zweierpotenz ist, kann die
+Für den wichtigen Spezialfall, dass $n = 2^d$ eine Zweierpotenz ist, kann die
 Anzahl der Komparatoren wieder explizit angegeben werden. \textit{Kenneth
 Batcher} zeigt in~\cite{B1968}, dass in diesem Fall
 \begin{displaymath}
-  k(n = 2^t) = \frac{1}{4} n \left(\log (n)\right)^2 - \frac{1}{4}n\log(n) + n - 1
+  k(n = 2^d) = \frac{1}{4} n \left(\log (n)\right)^2 - \frac{1}{4}n\log(n) + n - 1
 \end{displaymath}
 gilt.
 
@@ -884,7 +884,7 @@ früh wie möglich ausführt. So entsteht die kleinstmögliche Anzahl von
 \emph{Schichten}, in die sich ein Sortiernetzwerk unterteilen lässt.
 
 Diese Anzahl ist insbesondere beim automatisierten Bewerten von
-Komparatornetzwerken interessant, wie in Abschnitt~\ref{sect:bewertung}
+Komparatornetzwerken interessant, wie in Abschnitt~\ref{sect:sn-evolution:bewertung}
 beschrieben. Die Anzahl der Schichten kann künstlich vergrößert werden, indem
 Komparatoren später angewendet werden. Deshalb sollte vor einer Bewertung, die
 die Anzahl der Schichten als Bewertungskriterium verwendet, immer eine
@@ -1250,9 +1250,11 @@ Algorithmus}, der die in den vorherigen Abschnitten beschriebenen Mischer
 (Abschnitt~\ref{sect:konstruktive_netzwerke}) und Schnittmuster
 (Abschnitt~\ref{sect:leitungen_entfernen}) verwendet, um „möglichst gute“
 Sortiernetzwerke zu erzeugen. Was ein „gutes“ Sortiernetzwerk ausmacht, wird
-in Abschnitt~\ref{sect:bewertung} behandelt.
+in Abschnitt~\ref{sect:sn-evolution:bewertung} behandelt. Informationen zur Implementierung
+von \textsc{SN-Evolution} befinden sich in
+Abschnitt~\ref{sect:implementierung}.
 
-\subsection{Bewertungsfunktion}\label{sect:bewertung}
+\subsection{Bewertungsfunktion}\label{sect:sn-evolution:bewertung}
 
 Um Sortiernetzwerke überhaupt optimieren zu können, muss zunächst die
 {\em Güte} eines Netzwerks definiert werden. Prinzipiell gibt es zwei Ziele,
@@ -1277,8 +1279,9 @@ Abbildung~\ref{fig:16-green} dargestellt. Das \emph{schnellste} bekannte
 16-Sortiernetzwerk besteht aus 61~Komparatoren in nur 9~Schichten und ist in
 Abbildung~\ref{fig:16-voorhis} zu sehen.
 
-Eine Gütefunktion, die die beiden Ziele "`effizient"' und "`schnell"'
-berücksichtigen kann, hat die folgende allgemeine Form:
+\textsc{SN-Evolution} verwendet eine Gütefunktion, die die beiden Ziele
+"`effizient"' und "`schnell"' berücksichtigen kann. Sie hat die folgende
+generelle Form:
 \begin{equation}
   \operatorname{Guete}(S) = w_{\mathrm{Basis}}
                     + w_{\mathrm{Komparatoren}} \cdot \left|S\right|_\mathrm{Komparatoren}
@@ -1303,7 +1306,7 @@ verschiedener Netzwerke kleiner, was die {\em Exploration}, das Absuchen des
 gesamten Lösungsraums, begünstigt. Wählt man $w_{\mathrm{Basis}}$ hingegen
 klein -- in Abhängigkeit von den anderen beiden Parametern sind auch negative
 Werte möglich -- werden die relativen Unterschiede groß. Dadurch wird die {\em
-Exploitation}, das Finden (lokaler) Optima, bevorzugt.
+Exploitation}, das Streben zu (lokalen) Optima, verstärkt.
 
 Diese Parameter haben einen großen Einfluss auf die Geschwindigkeit, mit der
 der \textsc{SN-Evolution}-Algorithmus konvergiert und ob er tatsächlich gute
@@ -1314,10 +1317,25 @@ Leitungszahlen und Mischer-Typen experimentiert werden muss.
 Als guter Standardansatz für \textsc{SN-Evolution} haben sich die folgenden
 Werte herausgestellt:
 \begin{eqnarray*}
-w_{\mathrm{Basis}} &=& 0 \\
-w_{\mathrm{Komparatoren}} &=& 1 \\
-w_{\mathrm{Schichten}} &=& \left|S\right|_\mathrm{Leitungen}
+  w_{\mathrm{Basis}}        &=& 0 \\
+  w_{\mathrm{Komparatoren}} &=& 1 \\
+  w_{\mathrm{Schichten}}    &=& \left|S\right|_\mathrm{Leitungen}
 \end{eqnarray*}
+Sofern nicht anders angegeben, werden diese Werte im Folgenden zur Bewertung
+von Sortiernetzwerken verwendet. Die Bewertungsfunktion bevorzugt mit diesen
+Konstanten \emph{schnelle} Sortiernetzwerke, da das Einsparen einer Schicht
+ein höheres Gewicht als das Einsparen von Komparatoren hat.
+
+Wenn der \textsc{SN-Evolution}-Algorithmus nach \emph{effizienten}
+Sortiernetzwerken suchen soll, werden alternative Werte für die Konstanten der
+Bewertungsfunktion verwendet. Die Werte
+\begin{eqnarray*}
+  w_{\mathrm{Basis}}        &=& 0 \\
+  w_{\mathrm{Komparatoren}} &=& 2 \\
+  w_{\mathrm{Schichten}}    &=& 1
+\end{eqnarray*}
+geben dem Einsparen eines Komparators ein höheres Gewicht als dem Einsparen
+einer Schicht. \todo{Fehler hier noch was?}
 
 \subsection{Selektion}
 
@@ -1400,37 +1418,12 @@ wurde beim \textsc{SN-Evolution}-Algorithmus auf eine Mutation verzichtet.
 
 \subsection[Bitoner Mischer]{Versuche mit dem bitonen Mischer}
 
-\begin{figure}
-  \begin{center}
-    \input{images/16-e1-bitonic-1296542566.tex}
-  \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 67~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution} unter Verwendung des \emph{bitonen Mischers}
-    erzeugt.}
-  \label{fig:16-e1-bitonic-1296542566}
-\end{figure}
-
 Wenn \textsc{SN-Evolution} mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk
 als Eingabe gestartet wird und in der Rekombinationsphase den \emph{bitonen
-Mischer} verwendet, gibt der Algorithmus Sortiernetzwerke wie das in
-Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte zurück.
-
-Viele der Sortiernetzwerke, die von \textsc{SN-Evolution} in dieser
-Konfiguration gefunden werden, sind effizienter als das \emph{bitone
-Mergesort}-Netzwerk \bs{n}, das ebenfalls auf dem \emph{bitonen
-Merge}-Netzwerk \bm{n} beruht. Das in
-Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte 16-Sortiernetzwerk
-benötigt 67~Komparatoren, 13~Komparatoren weniger als \bs{n}.
-
-Wenn die Gütefunktion so gewählt ist, dass sie schnelle Sortiernetzwerke
-bevorzugt, können Netzwerke zurückgegeben werden, die schneller als \bs{n}
-sind. Viele der schnellen Sortiernetzwerke sind außerdem effizienter als
-\bs{n}. Das Sortiernetzwerk mit $n = 23$ Leitungen benötigt mit
-134~Komparatoren jedoch einen Komparator mehr als \bs{23}. Die Daten von
-schnellen Sortiernetzwerken, die \textsc{SN-Evolution} mit dem \emph{bitonen
-Merge}-Netzwerk erzeugt hat, sind in Tabelle~\ref{tbl:sn-ev-bm-fast}
-aufgelistet.
+Mischer} verwendet, gibt der Algorithmus \emph{effiziente} und in einigen
+Fällen \emph{schnelle} Sortiernetzwerke aus. Die Ergebnisse des
+\textsc{SN-Evolution}-Algorithmus unter Verwendung des \emph{bitonen Mischers}
+sind in Tabelle~\ref{tbl:sn-ev-bm-fast} zusammengefasst.
 
 \begin{table}\label{tbl:sn-ev-bm-fast}
 \begin{center}
@@ -1441,23 +1434,23 @@ Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \bm{n}} & \multicolumn{2}{|l|
 \cline{2-5}
     ($n$) & Komp. & Schichten & Komp. & Schichten \\
 \hline
-        8 & \gcell  20 &         6 &         24 &         6 \\
-        9 & \Gcell  26 &         8 &         28 &         8 \\
-       10 & \gcell  31 & \gcell  8 &         33 &         9 \\
-       11 & \Gcell  37 & \Gcell  9 &         39 &        10 \\
-       12 & \gcell  42 & \gcell  9 &         46 &        10 \\
-       13 & \Gcell  48 &        10 &         53 &        10 \\
-       14 & \gcell  54 &        10 &         61 &        10 \\
-       15 & \Gcell  61 &        10 &         70 &        10 \\
-       16 & \gcell  67 &        10 &         80 &        10 \\
-       17 & \Gcell  76 &        12 &         85 &        12 \\
-       18 & \gcell  87 & \gcell 12 &         91 &        13 \\
-       19 & \Gcell  93 & \Gcell 13 &         98 &        14 \\
-       20 & \gcell 104 & \gcell 13 &        106 &        14 \\
-       21 & \Gcell 109 & \Gcell 14 &        114 &        15 \\
-       22 & \gcell 118 & \gcell 14 &        123 &        15 \\
-       23 &        134 & \Gcell 14 & \Gcell 133 &        15 \\
-       24 & \gcell 133 &        15 &        144 &        15 \\
+        8 & \gcell  20 &         6 &  24 &  6 \\
+        9 & \Gcell  26 &         8 &  28 &  8 \\
+       10 & \gcell  31 & \gcell  8 &  33 &  9 \\
+       11 & \Gcell  37 & \Gcell  9 &  39 & 10 \\
+       12 & \gcell  42 & \gcell  9 &  46 & 10 \\
+       13 & \Gcell  48 &        10 &  53 & 10 \\
+       14 & \gcell  54 &        10 &  61 & 10 \\
+       15 & \Gcell  61 &        10 &  70 & 10 \\
+       16 & \gcell  67 &        10 &  80 & 10 \\
+       17 & \Gcell  76 &        12 &  85 & 12 \\
+       18 & \gcell  87 & \gcell 12 &  91 & 13 \\
+       19 & \Gcell  93 & \Gcell 13 &  98 & 14 \\
+       20 & \gcell 104 & \gcell 13 & 106 & 14 \\
+       21 & \Gcell 109 & \Gcell 14 & 114 & 15 \\
+       22 & \gcell 118 & \gcell 14 & 123 & 15 \\
+       23 & \Gcell 129 & \Gcell 14 & 133 & 15 \\
+       24 & \gcell 133 &        15 & 144 & 15 \\
 \hline
 \end{tabular}
 \caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
@@ -1469,19 +1462,89 @@ Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \bm{n}} & \multicolumn{2}{|l|
 \end{center}
 \end{table}
 
-\subsection[Odd-Even-Mischer]{Versuche mit dem Odd-Even-Mischer}
+Alle Sortiernetzwerke, die von \textsc{SN-Evolution} in dieser Konfiguration
+gefunden wurden, waren \emph{effizienter} als das \emph{bitone
+Mergesort}-Netzwerk \bs{n}, das ebenfalls auf dem \emph{bitonen
+Merge}-Netzwerk \bm{n} beruht. Zum Beispiel benötigt das in
+Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte 16-Sortiernetzwerk
+67~Komparatoren, 13~Komparatoren weniger als \bs{n}.
 
 \begin{figure}
   \begin{center}
-    \input{images/16-e1-oddeven-1296543330.tex}
+    \input{images/16-e1-bitonic-1296542566.tex}
   \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
+  \caption{Sortiernetzwerk mit 16~Leitungen und 67~Komparatoren in
     10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution} unter Verwendung des \emph{Odd-Even}-Mischers
+    \textsc{SN-Evolution} unter Verwendung des \emph{bitonen Mischers}
     erzeugt.}
-  \label{fig:16-e1-oddeven-1296543330}
+  \label{fig:16-e1-bitonic-1296542566}
+\end{figure}
+
+Wenn die Gütefunktion so gewählt ist, dass sie schnelle Sortiernetzwerke
+bevorzugt, werden in einigen Fällen Netzwerke zurückgegeben, die
+\emph{schneller} und \emph{effizienter} als \bs{n} sind. Das
+19-Sortiernetzwerk in Abbildung~\ref{fig:19-e1-bm-fast} besitzt beispielsweise
+nur 13~Schichten und benötigt damit einen parallelen Schritt weniger als
+\bs{19}.
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-e1-bm-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 93~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{bitonen Mischers} erzeugt.}
+  \label{fig:19-e1-bm-fast}
 \end{figure}
 
+\subsection[Odd-Even-Mischer]{Versuche mit dem Odd-Even-Mischer}
+
+Die folgenden Ergebnisse wurden erzielt, indem \textsc{SN-Evolution} mit dem
+\emph{Odd-Even-Transpositionsort}-Netzwerk als Eingabe gestartet wurde und in
+der Rekombinationsphase das \emph{Odd-Even-Merge}-Netzwerk verwendete. So
+erzeugt der Algorithmus entweder Sortiernetzwerke, die genauso schnell und
+effizient wie das \oes{n}-Netzwerk, oder Sortiernetzwerke, die schneller aber
+weniger effizient als das \oes{n}-Netzwerk sind. Die Ergebnisse von
+\textsc{SN-Evolution} mit dem \emph{Odd-Even}-Mischer sind in
+Tabelle~\ref{tbl:sn-ev-oem-fast} zusammengefasst.
+
+\begin{table}\label{tbl:sn-ev-oem-fast}
+\begin{center}
+\rowcolors{4}{black!5}{}
+\begin{tabular}{|r|r|r|r|r|}
+\hline
+Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \oem{n}} & \multicolumn{2}{|l|}{\oes{n}} \\
+\cline{2-5}
+          & Komp. & Schichten & Komp. & Schichten \\
+\hline
+        8 &   19 &         6 &         19 &         6 \\
+        9 &   26 &         8 &         26 &         8 \\
+       10 &   31 &         9 &         31 &         9 \\
+       11 &   38 & \Gcell  9 & \Gcell  37 &        10 \\
+       12 &   43 & \gcell  9 & \gcell  41 &        10 \\
+       13 &   48 &        10 &         48 &        10 \\
+       14 &   53 &        10 &         53 &        10 \\
+       15 &   59 &        10 &         59 &        10 \\
+       16 &   63 &        10 &         63 &        10 \\
+       17 &   74 &        12 &         74 &        12 \\
+       18 &   82 &        13 &         82 &        13 \\
+       19 &   93 & \Gcell 13 & \Gcell  91 &        14 \\
+       20 &   97 &        14 &         97 &        14 \\
+       21 &  108 & \Gcell 14 & \Gcell 107 &        15 \\
+       22 &  117 & \gcell 14 & \gcell 114 &        15 \\
+       23 &  127 & \Gcell 14 & \Gcell 122 &        15 \\
+       24 &  128 &        15 & \gcell 127 &        15 \\
+\hline
+\end{tabular}
+\caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
+  unter Verwendung des \emph{Odd-Even-Merge}-Netzwerks \oem{n}. Der
+  Algorithmus wurde mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n}
+  gestartet und nach 2.500.000 Iterationen beendet. Die Bewertungsfunktion
+  nutzte die Konstanten $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} =
+  1$, $w_{\mathrm{Schichten}} = n$.}
+\end{center}
+\end{table}
+
 Im vorherigen Abschnitt wurde gezeigt, dass der
 \textsc{SN-Evolution}-Algorithmus unter Verwendung des \emph{bitonen Mischers}
 Sortiernetzwerke erzeugen kann, die effizienter als das rekursiv aus dem
@@ -1491,16 +1554,34 @@ erzielen. Die Sortiernetzwerke, die \textsc{SN-Evolution} unter Verwendung des
 \emph{Odd-Even-Merge}-Netzwerks findet, erreichen das
 \emph{Odd-Even-Mergesort}-Netzwerk bezüglich Effizienz, übertreffen es aber
 nicht. Ein Beispiel für ein entsprechendes Sortiernetzwerk ist in
-Abbildung~\ref{fig:16-e1-oddeven-1296543330} zu sehen.
+Abbildung~\ref{fig:16-e1-oem-fast} dargestellt.
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-e1-oem-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution} unter Verwendung des \emph{Odd-Even}-Mischers
+    erzeugt.}
+  \label{fig:16-e1-oem-fast}
+\end{figure}
 
 Mit einer Gütefunktion, die schnelle Sortiernetzwerke bevorzugt, ist es auch
 mit dem \emph{Odd-Even}-Mischer möglich, dass \textsc{SN-Evolution}
-Sortiernetzwerke zurück gibt, die schneller als \oes{n} sind. Dies geschieht
-beispielsweise bei $n = 11$ und $n = 12$: für diese Leitungszahlen gibt
-\textsc{SN-Evolution} Sortiernetzwerke aus, die nur 9~Schicten benötigen.
-\oes{11} und \oes{12} benötigen jeweils 10~Schichten. Eine Auflistung der
-Ergebnisse von \textsc{SN-Evolution} mit dem \emph{Odd-Even}-Mischer befindet
-sich in Tabelle~\ref{tbl:sn-ev-oem-fast}.
+Sortiernetzwerke zurück gibt, die schneller als \oes{n} sind. Beispielsweise
+benötigt das 19-Sortiernetzwerk, das in Abbildung~\ref{fig:19-e1-oem-fast}
+dargestellt ist, nur 13~Schichten, während \oes{19} 14~Schichten benötigt.
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-e1-oem-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 93~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{Odd-Even}-Mischers erzeugt.}
+  \label{fig:19-e1-oem-fast}
+\end{figure}
 
 %\begin{figure}
 %\begin{center}
@@ -1534,43 +1615,6 @@ sich in Tabelle~\ref{tbl:sn-ev-oem-fast}.
 %\label{fig:10-e2-1239014566}
 %\end{figure}
 
-\begin{table}\label{tbl:sn-ev-oem-fast}
-\begin{center}
-\rowcolors{4}{black!5}{}
-\begin{tabular}{|r|r|r|r|r|}
-\hline
-Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \oem{n}} & \multicolumn{2}{|l|}{\oes{n}} \\
-\cline{2-5}
-          & Komp. & Schichten & Komp. & Schichten \\
-\hline
-        8 &   19 &         6 &         19 &         6 \\
-        9 &   26 &         8 &         26 &         8 \\
-       10 &   31 &         9 &         31 &         9 \\
-       11 &   38 & \Gcell  9 & \Gcell  37 &        10 \\
-       12 &   43 & \gcell  9 & \gcell  41 &        10 \\
-       13 &   48 &        10 &         48 &        10 \\
-       14 &   53 &        10 &         53 &        10 \\
-       15 &   59 &        10 &         59 &        10 \\
-       16 &   63 &        10 &         63 &        10 \\
-       17 &   74 &        12 &         74 &        12 \\
-       18 &   82 &        13 &         82 &        13 \\
-       19 &   93 & \Gcell 13 & \Gcell  91 &        14 \\
-       20 &   97 &        14 &         97 &        14 \\
-       21 &  108 & \Gcell 14 & \Gcell 107 &        15 \\
-       22 &  117 & \gcell 14 & \gcell 114 &        15 \\
-       23 &  129 & \Gcell 14 & \Gcell 122 &        15 \\
-       24 &  128 &        15 & \gcell 127 &        15 \\
-\hline
-\end{tabular}
-\caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
-  unter Verwendung des \emph{Odd-Even-Merge}-Netzwerks \oem{n}. Der
-  Algorithmus wurde mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n}
-  gestartet und nach 2.500.000 Iterationen beendet. Die Bewertungsfunktion
-  nutzte die Konstanten $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} =
-  1$, $w_{\mathrm{Schichten}} = n$.}
-\end{center}
-\end{table}
-
 \subsection{Zufälliger Mischer}
 
 Die Ergebnisse der beiden vorhergehenden Abschnitte zeigen, dass für einige
@@ -1582,15 +1626,9 @@ Netzwerk für $n = 18$ bei Verwendung des \emph{bitone Mischers} nur
 um das beste Ergebnis beider Konstruktionen zu erreichen.
 \textsc{SN-Evolution} kann zu diesem Zweck beim Zusammenfügen zweier
 Individuen zufällig zwischen dem \emph{bitonen Mischer} und dem
-\emph{Odd-Even}-Mischer wählen.
-
-Die Ergebnisse von \textsc{SN-Evolution} bei einer zufälligen Wahl des
-Mischers in der Rekombinationsphase sind in Tabelle~\ref{tbl:sn-ev-rnd-fast}
-zusammengefasst. Bei den Leitungszahlen 12, 19, 21, 22 und 23 hat der
-Algorithmus Netzwerke mit einer Effizienz erzeugt, die mit nur einem
-Mischertyp nicht erreicht wurde. Die Ergebnisse mit den Leitungszahlen 18 und
-20 erreichen die Geschwindigkeit der Netzwerke, die mit dem \emph{bitonen
-Mischer} generiert wurden, und verbessern gleichzeitig die Effizienz.
+\emph{Odd-Even}-Mischer wählen. Die Ergebnisse von \textsc{SN-Evolution} bei
+einer zufälligen Wahl des Mischers in der Rekombinationsphase sind in
+Tabelle~\ref{tbl:sn-ev-rnd-fast} zusammengefasst.
 
 \begin{table}\label{tbl:sn-ev-rnd-fast}
 \begin{center}
@@ -1618,19 +1656,69 @@ Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \bm{n}}
        20 &        104 & \gcell 13 & \gcell  97 &        14 &        101 & \gcell 13 \\
        21 &        109 &        14 &        108 &        14 & \Gcell 107 &        14 \\
        22 &        118 &        14 &        117 &        14 & \gcell 116 &        14 \\
-       23 &        134 &        14 &        129 &        14 & \Gcell 128 &        14 \\
+       23 &        129 &        14 & \Gcell 127 &        14 &        128 &        14 \\
        24 &        133 &        15 & \gcell 128 &        15 &        130 &        15 \\
 \hline
 \end{tabular}
 \caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
-  unter Verwendung der verschiedenen Mischer. Der Algorithmus wurde mit dem
+  unter Verwendung der beiden Mischer-Netzwerke. Der Algorithmus wurde mit dem
   \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n} gestartet und nach
   2.500.000 Iterationen beendet. Die Bewertungsfunktion nutzte die Konstanten
-  $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} = 1$,
+  $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} = 1$ und
   $w_{\mathrm{Schichten}} = n$.}
 \end{center}
 \end{table}
 
+Bei einigen Leitungszahlen kann der Algorithmus durch die Verfügbarkeit beider
+Mi\-scher-Netzwerke Sortiernetzwerke zurückgeben, die effizienter als die
+vorherigen Ergebnisse sind. Beispielsweise ist das 19-Sortiernetzwerk in
+Abbildung~\ref{fig:19-e1-rnd-fast} mit 92~Komparatoren effizienter als die
+19-Sortiernetzwerke, die mit nur einem der beiden Mischer-Netzwerke erreicht
+wurden (Abbildungen~\ref{fig:19-e1-bm-fast} und~\ref{fig:19-e1-oem-fast}).
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-e1-rnd-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 92~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{bitonen Mischers} und des
+    \emph{Odd-Even}-Mischers erzeugt.}
+  \label{fig:19-e1-rnd-fast}
+\end{figure}
+
+Die Ergebnisse anderer Leitungszahlen erreichen die Geschwindigkeit der
+Ergebnisse, die mit dem \emph{bitonen Mischer} erzielt wurden. Die Effizienz
+liegt zwischen den Ergebnissen, die mit dem \emph{bitonen Mischer} erzielt
+wurden, und den Ergebnissen, die mit dem \emph{Odd-Even}-Mischer erzielt
+wurden. Beispielsweise ist das 18-Sortiernetzwerk in
+Abbildung~\ref{fig:18-e1-rnd-fast} so schnell wie das Ergebnis, das mit dem
+\emph{bitonen Mischer} ausgegeben wurde. Mit 83~Komparatoren liegt die
+Effizienz des Sortiernetzwerks zwischen den Ergebnissen, die mit dem
+\emph{bitonen Mischer} (87~Komparatoren), beziehungsweise dem
+\emph{Odd-Even}-Mischer (82~Komparatoren) erreicht werden konnten.
+
+\begin{figure}
+  \begin{center}
+    \input{images/18-e1-rnd-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 18~Leitungen und 83~Komparatoren in
+    12~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{bitonen Mischers} und des
+    \emph{Odd-Even}-Mischers erzeugt.}
+  \label{fig:18-e1-rnd-fast}
+\end{figure}
+
+In einigen Fällen hat \textsc{SN-Evolution} in dieser Konfiguration
+Sortiernetzwerke ausgegeben, die weniger effizient und genauso schnell wie die
+bisherigen Ergebnisse unter Verwendung des \emph{Odd-Even}-Mischers sind.
+Prinzipiell könnte der Algorithmus in jeder Iteration zufällig den
+\emph{Odd-Even}-Mischers auswählen, um die selektierten Individuen zu
+rekombinieren. Das heißt, das die Ergebnisse auch bei einer zufälligen Wahl
+des Mischer-Netzwerks theoretisch erreicht werden können. Allerdings sind
+unter Umständen mehr Iterationen notwendig, bis die gleiche Effizienz erreicht
+wird.
+
 %\input{shmoo-aequivalenz.tex}
 
 \newpage
@@ -1810,7 +1898,7 @@ Das Programm \textsc{SN-Evolution-Cut} implementiert einen evolutionären
 Algorithmus, der zu einem gegebenen Sortiernetzwerk und einer gewünschten
 Leitungszahl ein Schnittmuster sucht, dass ein Sortiernetzwerk mit einer
 möglichst geringen Anzahl von Komparatoren und Schichten ergibt. Zur Bewertung
-von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}.
+von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:sn-evolution:bewertung}.
 
 Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet \emph{Schnittmuster}, die
 in Abschnitt~\ref{sect:anzahl_schnittmuster} definiert wurden, als Individuen.
@@ -1842,6 +1930,8 @@ $k$-Schnittmuster als auch das $m$-Sortiernetzwerk als Ausgabe von
 \subsection[Bitones Mergesort-Netzwerk]{Versuche mit dem bitonen Mergesort-Netzwerk}
 \label{sect:sn-evolution-cut:bs}
 
+% Effizienz
+
 Wenn der \textsc{SN-Evolution-Cut}-Algorithmus mit dem \emph{bitonen
 Mergesort}-Netzwerk \bs{n} gestartet wird und $k$~Leitungen entfernen soll,
 ergeben die gefundenen Schnittmuster in vielen Fällen effizientere Netzwerke
@@ -1851,6 +1941,8 @@ Sortiernetzwerk mit 67~Komparatoren, 13~Komparatoren weniger als \bs{16}
 benötigt. Eines der Sortiernetzwerke, die auf diese Art und Weise generiert
 wurde, ist in Abbildung~\ref{fig:16-ec-from-bs22} zu sehen.
 
+% Beispiel Effizienz
+
 \begin{figure}
   \begin{center}
     \input{images/16-ec-from-bs22.tex}
@@ -1926,21 +2018,7 @@ Bei anderen Größen ergeben erst größere~$k$ effiziente Sortiernetzwerke,
 beispielsweise bei $m = 10$: erst für $n = 18$, $k = 8$ wird ein
 Sortiernetzwerk mit 31~Komparatoren gefunden.
 
-\begin{figure}
-  \centering
-  \subfigure[10-Sortiernetzwerk aus 31~Komparatoren in 8~Schichten. Das
-  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{19} erzeugt.]{\input{images/10-ec-from-bs19-fast.tex}\label{fig:10-ec-from-bs19-fast}}
-  \subfigure[11-Sortiernetzwerk aus 37~Komparatoren in 9~Schichten. Das
-  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{18} erzeugt.]{\input{images/11-ec-from-bs18-fast.tex}\label{fig:11-ec-from-bs18-fast}}
-  \subfigure[12-Sortiernetzwerk aus 42~Komparatoren in 9~Schichten. Das
-  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{22} erzeugt.]{\input{images/12-ec-from-bs22-fast.tex}\label{fig:12-ec-from-bs22-fast}}
-  \subfigure[19-Sortiernetzwerk aus 92~Komparatoren in 13~Schichten. Das
-  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{37} erzeugt.]{\input{images/19-ec-from-bs37-fast.tex}\label{fig:19-ec-from-bs37-fast}}
-  \caption{Für einige Ziel-Leitungszahlen, unter anderem $m \in \{10, 11,
-  12, 19\}$, kann der \textsc{SN-Evolution-Cut}-Algorithmus Sortiernetzwerke
-  erzeugen, die \emph{schneller} und \emph{effizienter} als \bs{m} sind.}
-  \label{fig:ec-bs-fast_networks}
-\end{figure}
+% Geschwindigkeit
 
 Bei einigen Werten für die Ziel-Leitungsanzahl $m$ kann der
 \textsc{SN-Evolution-Cut}-Algorithmus Ergebnisse erzielen, die schneller als
@@ -1992,6 +2070,24 @@ schnelle Sortiernetzwerke erzeugen. Beispiele für schnelle Sortiernetzwerke,
 die mit den von \textsc{SN-Evolution-Cut} ausgegebenen Schnittmustern erzeugt
 werden können, sind in Abbildung~\ref{fig:ec-bs-fast_networks} dargestellt.
 
+% Beispiel Geschwindigkeit
+
+\begin{figure}
+  \centering
+  \subfigure[10-Sortiernetzwerk aus 31~Komparatoren in 8~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{19} erzeugt.]{\input{images/10-ec-from-bs19-fast.tex}\label{fig:10-ec-from-bs19-fast}}
+  \subfigure[11-Sortiernetzwerk aus 37~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{18} erzeugt.]{\input{images/11-ec-from-bs18-fast.tex}\label{fig:11-ec-from-bs18-fast}}
+  \subfigure[12-Sortiernetzwerk aus 42~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{22} erzeugt.]{\input{images/12-ec-from-bs22-fast.tex}\label{fig:12-ec-from-bs22-fast}}
+  \subfigure[19-Sortiernetzwerk aus 92~Komparatoren in 13~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{37} erzeugt.]{\input{images/19-ec-from-bs37-fast.tex}\label{fig:19-ec-from-bs37-fast}}
+  \caption{Für einige Ziel-Leitungszahlen, unter anderem $m \in \{10, 11,
+  12, 19\}$, kann der \textsc{SN-Evolution-Cut}-Algorithmus Sortiernetzwerke
+  erzeugen, die \emph{schneller} und \emph{effizienter} als \bs{m} sind.}
+  \label{fig:ec-bs-fast_networks}
+\end{figure}
+
 Bei der Betrachtung der Effizienz wurde festgestellt, dass oft schon das
 Entfernen einer einzigen Leitung zu eines effizienteren Ergebnis als \bs{m}
 führt. Bei der Geschwindigkeit ist die Anzahl der Leitungen, die entfernt
@@ -2001,6 +2097,8 @@ einzusparen waren bei $m = 10$ und $m = 11$ $k = 6$ Schnitte notwendig. Bei $m
 reduzieren. Für schnelle \emph{und} effiziente Netzwerke musste $k$ teilweise
 noch größer gewählt werden.
 
+% Detaillierte Betrachtung fuer m = 19
+
 Die Effizienz und Geschwindigkeit der Sortiernetzwerke, die von
 \textsc{SN-Evolution-Cut} aus dem \emph{bitonen Mergesort}-Netzwerk erzeugten
 werden, ist für $m = 19$ und $n = 20 \dots 38$ ($k = 1 \dots 19$) in
@@ -2036,7 +2134,7 @@ Abbildung~\ref{fig:19-ec-from-bs37-fast} zu sehen.
           35 & 93 & 13 \\
           \rowcolor{green!10}
           36 & 92 & 13 \\
-         \rowcolor{green!10!white!95!black}
+          \rowcolor{green!10!white!95!black}
           37 & 92 & 13 \\
           38 & 93 & 13 \\
     \hline
@@ -2057,6 +2155,8 @@ Abbildung~\ref{fig:19-ec-from-bs37-fast} zu sehen.
   \label{tbl:ec-bs-19}
 \end{table}
 
+% 2-er Potenz
+
 \textit{Moritz Mühlenthaler} und \textit{Rolf Wanka} zeigen in~\cite{MW2010},
 wie ein \emph{bitoner Mischer} $\bm{n = 2^d}$, der nach Batchers Methode
 konstruiert wurde, durch systematisches Entfernen von Leitungen in einen
@@ -2086,10 +2186,12 @@ dargestellt.
   \begin{center}
     \input{images/16-ec-from-bs32.tex}
   \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 68~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution-Cut} aus dem \emph{bitonen Mergesort-Netzwerk}
-    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
+  \caption{Visualisierung eines 16-Schnittmusters, das von
+    \textsc{SN-Evolution-Cut} für das \emph{bitone Mergesort}-Netzwerk \bs{32}
+    berechnet wurde. Das resultierende Sortiernetzwerk besteht aus
+    68~Komparatoren in 10~Schichten und ist in
+    Abbildung~\ref{fig:16-ec-from-bs32-normalized} als
+    Standard-Sortiernetzwerk dargestellt.}
   \label{fig:16-ec-from-bs32}
 \end{figure}
 
@@ -2098,9 +2200,10 @@ dargestellt.
     \input{images/16-ec-from-bs32-normalized.tex}
   \end{center}
   \caption{Sortiernetzwerk mit 16~Leitungen und 68~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution-Cut} aus dem bitonen Mergesort-Netzwerk
-    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
+    10~Schichten. Das Netzwerk wurde mit einem 16-Schnittmuster, das von
+    \textsc{SN-Evolution-Cut} berechnet wurde, aus dem \emph{bitone
+    Mergesort}-Netzwerk \bs{32} erzeugt. Das Schnittmuster ist in
+    Abbildung~\ref{fig:16-ec-from-bs32} dargestellt.}
   \label{fig:16-ec-from-bs32-normalized}
 \end{figure}
 
@@ -2214,6 +2317,8 @@ tabellarisch.
  23 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 &     \\
  24 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 & 122 \\
 \hline
+\oes{m}&19&  26 &  31 &  37 &  41 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 & 122 \\
+\hline
 \end{tabular}
   \end{center}
   \caption{Anzahl der Komparatoren der Ergebnisse von
@@ -2318,14 +2423,23 @@ $k = 10$, das 95~Komparatoren benötigt. Das Ergebnis, das auf Basis des
       27  &  91 & 14 \\
       28  &  91 & 14 \\
       29  &  95 & 13 \\
+      \rowcolor{green!10}
       30  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       31  &  93 & 13 \\
+      \rowcolor{green!10}
       32  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       33  &  93 & 13 \\
+      \rowcolor{green!10}
       34  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       35  &  93 & 13 \\
+      \rowcolor{green!10}
       36  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       37  &  93 & 13 \\
+      \rowcolor{green!10}
       38  &  93 & 13 \\
       \hline
  \bs{19}  &  98 & 14 \\
@@ -2340,6 +2454,8 @@ $k = 10$, das 95~Komparatoren benötigt. Das Ergebnis, das auf Basis des
   \label{tbl:ec-oes-19}
 \end{table}
 
+% 2-er Potenzen
+
 In Abschnitt~\ref{sect:anzahl_schnittmuster} wurde bereits untersucht, wie
 viele \emph{unterschiedliche} 16-Schnittmuster die konstruierten
 Sortiernetzwerke $\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und
@@ -2354,7 +2470,7 @@ Abschnitt~\ref{sect:implementierung}) etwa 20.000 Iterationen pro Sekunde auf
 derzeitigen Computern.} ein gutes 16-Schnittmuster findet.
 
 Eines der 16-Schnittmuster für \oes{32}, die ein Sortiernetzwerk erzeugen, das
-bezüglich Effizienz und Geschwindigkeit identisch ist zu \oes{16}, ist
+bezüglich Effizienz und Geschwindigkeit identisch zu \oes{16} ist, ist
 $\operatorname{MIN}(1, 6, 11, 14, 17, 23, 26, 29)$, $\operatorname{MAX}(2, 7,
 8,$ $13, 18, 21, 27, 31)$. Das Schnittmuster ist in
 Abbildung~\ref{fig:16-ec-from-oes32-cut} veranschaulicht, das resultierende
@@ -2384,9 +2500,11 @@ Netzwerk ist in Abbildung~\ref{fig:16-ec-from-oes32} zu sehen.
   \label{fig:16-ec-from-oes32}
 \end{figure}
 
+% Regelmaessiges Schnittmuster fuer n = 2^d
+
 Bei diesem Schnittmuster fällt auf, dass es für jeweils vier Eingänge (0--3,
 4--7, \dots, 28--31) einen Minimum- und einen Maximumschnitt gibt. Aus dieser
-Beobachtung kann man das regelmäßige Schnittmuster
+Beobachtung kann das regelmäßige Schnittmuster
 \begin{displaymath}
 \textit{Eingang}_i = \left\{ \begin{array}{rl}
    \infty & \quad \textrm{falls } i \bmod 4 = 0 \\
@@ -2394,11 +2512,11 @@ Beobachtung kann man das regelmäßige Schnittmuster
         ? & \quad \mathrm{sonst}
   \end{array} \right.
 \end{displaymath}
-ableiten. Es entfernt die Hälfte der Leitungen, vorausgesetzt die Anzahl der
-Leitungen ist durch Vier teilbar. Das Schnittmuster erzeugt effiziente
-Netzwerke, wenn die Anzahl der Leitungen $n = 2^d$ eine Zweierpotenz ist. Ein
-32-Sortiernetzwerk, das mit diesem Schnittmuster aus \oes{64} erzeugt wurde,
-ist in Abbildung~\ref{fig:32-ec-from-oes64} zu sehen.
+abgeleitet werden. Es entfernt die Hälfte der Leitungen, vorausgesetzt die
+Anzahl der Leitungen ist durch Vier teilbar. Das Schnittmuster erzeugt
+effiziente Netzwerke, wenn die Anzahl der Leitungen $n = 2^d$ eine
+Zweierpotenz ist. Ein 32-Sortiernetzwerk, das mit diesem Schnittmuster aus
+\oes{64} erzeugt wurde, ist in Abbildung~\ref{fig:32-ec-from-oes64} zu sehen.
 
 \begin{figure}
   \begin{center}
@@ -2410,18 +2528,20 @@ ist in Abbildung~\ref{fig:32-ec-from-oes64} zu sehen.
   \label{fig:32-ec-from-oes64}
 \end{figure}
 
-Wenn die Anzahl der Leitungen keine Zweierpotenz ist, erreichen die so
-erzeugten Sortiernetzwerke die Effizienz des
+Wenn die Anzahl der Leitungen keine Zweierpotenz ist, erreichen die durch
+dieses regelmäßige Schnittmuster erzeugten Sortiernetzwerke die Effizienz des
 \emph{Odd-Even-Mergesort}-Netzwerks nicht. Wendet man das Schnittmuster
 beispielsweise auf \oes{24} an, so erhält man ein Sortiernetzwerk mit
 43~Komparatoren -- \oes{12} kommt mit 41~Komparatoren aus. Die Geschwindigkeit
 beider Sortiernetzwerke ist mit 10~Schichten identisch.
 
-Startet man hingegen den \textsc{SN-Evolution-Cut}-Algorithmus mit \oes{24}
-und dem Ziel, ein gutes 12-Schnittmuster zu finden, hängt die Ausgabe von der
-verwendeten Gütefunktion ab. Werden effiziente Netzwerke bevorzugt, findet der
-Algorithmus Schnittmuster wie $\operatorname{MIN}(6, 7, 8, 9, 16, 17, 20,
-22)$, $\operatorname{MAX}(2, 4, 12, 14)$, dessen Ergebnis in
+% SN-Evolution-Cut vs. regelmaessiges Schnittmuster
+
+Wird der \textsc{SN-Evolution-Cut}-Algorithmus mit \oes{n}, $n = 22, 23, 24$
+und $k = 10, 11, 12$ gestartet, hängt die Ausgabe von der verwendeten
+Gütefunktion ab. Werden effiziente Netzwerke bevorzugt, findet der Algorithmus
+Schnittmuster wie das 12-Schnittmus\-ter $\operatorname{MIN}(6, 7, 8, 9, 16, 17,
+20, 22)$, $\operatorname{MAX}(2, 4, 12, 14)$ für \oes{24}, dessen Ergebnis in
 Abbildung~\ref{fig:12-ec-from-oes24-efficient} zu sehen ist. Das resultierende
 Sortiernetzwerk besteht aus 41~Komparatoren, die in 10~Schichten angeordnet
 werden können. Damit ist das Netzwerk bezüglich Effizienz und Geschwindigkeit
@@ -2429,9 +2549,11 @@ gleichauf mit \oes{12}. Werden hingegen schnelle Sortiernetzwerke bevorzugt,
 werden stattdessen Schnittmuster wie $\operatorname{MIN}(6, 7, 11, 12, 15,
 16)$, $\operatorname{MAX}(1, 3, 10, 17, 20, 23)$ ausgegeben. Das Ergebnis
 dieses Schnittmusters ist in Abbildung~\ref{fig:12-ec-from-oes24-fast} zu
-sehen. Das Sortiernetzwerk besteht aus 43~Komparatoren, die in 9~Schichten
-angeordnet sind. Das resultierende Netzwerk zwar nicht so effizient wie
-\oes{12}, dafür aber schneller als \oes{12} und \bs{12}.
+sehen, weitere Ergebnisse für diese Gütefunktion sind in den
+Tabellen~\ref{tbl:ec-oes-efficiency} und~\ref{tbl:ec-oes-speed} zusammengefasst.
+Das resultierende 12-Sortiernetzwerk besteht aus 43~Komparatoren, die
+in 9~Schichten angeordnet sind. Das resultierende Netzwerk zwar nicht so
+effizient wie \oes{12}, dafür aber schneller als \oes{12} und \bs{12}.
 
 \begin{figure}
   \centering
@@ -2448,55 +2570,27 @@ angeordnet sind. Das resultierende Netzwerk zwar nicht so effizient wie
   \label{fig:12-ec-from-oes24}
 \end{figure}
 
-Das \oes{24}-Sortiernetzwerk ist kein Einzelfall: \textsc{SN-Evolution-Cut}
-findet Sortiernetzwerke, die schneller sind als das entsprechende
-\emph{Odd-Even-Mergesort}-Netzwerk, unter anderem für das Sortiernetzwerke mit
-22, 24, 38, 40, 42, 44 und 46 Leitungen. In der folgenden Tabelle sind einige
-schnelle Netzwerke, die von \textsc{SN-Evolution-Cut} generiert werden können,
-charakterisiert. Die Eingabe für \textsc{SN-Evolution-Cut} war jeweils das
-\emph{Odd-Even-Mergesort}-Netzwerk mit der doppelten Leitungszahl.
-\begin{center}
-\begin{tabular}{|r|r|r|r|r|}
-\hline
-Leitungen  & Komparatoren   & Schichten      & Komparatoren & Schichten \\
-           & \textsc{SN-EC} & \textsc{SN-EC} &      \oes{n} &   \oes{n} \\
-\hline
-11 &  38 &  9 &  37 & 10 \\
-12 &  43 &  9 &  41 & 10 \\
-19 &  93 & 13 &  91 & 14 \\
-20 & 101 & 13 &  97 & 14 \\
-21 & 108 & 14 & 107 & 15 \\
-22 & 116 & 14 & 114 & 15 \\
-23 & 125 & 14 & 122 & 15 \\
-\hline
-\end{tabular}
-\end{center}
-Abbildung~\ref{fig:23-ec-from-oes46} zeigt beispielhaft ein
-23-Sortiernetzwerk, das aus \oes{46} generiert wurde. Bemerkenswert an diesem
-Sortiernetzwerk ist insbesondere, dass \textsc{SN-Evolution-Cut} mit der
-Eingabe \bs{46} ein besseres Ergebnis liefert als mit der Eingabe \oes{46}. In
-beiden Fällen wird ein Sortiernetzwerk zurückgegeben, das im Vergleich zu
-\bs{23} beziehungsweise \oes{23} eine Schicht einspart.
-
-\begin{figure}
-  \begin{center}
-    \input{images/23-ec-from-oes46-fast.tex}
-  \end{center}
-  \caption{23-Sortiernetzwerk mit 125~Komparatoren in 14~Schichten. 
-    Das Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \oes{46} mit dem
-    Schnittmuster $\operatorname{MIN}(6, 7, 9, 17, 19, 22, 29, 30, 32, 34, 38,
-    44)$, $\operatorname{MAX}(4, 5, 11, 16, 18, 25, 31, 36, 39, 42, 45)$
-    erzeugt.}
-  \label{fig:23-ec-from-oes46}
-\end{figure}
-
 \subsection[Pairwise-Sorting-Netzwerk]{Versuche mit dem Pairwise-Sorting-Netzwerk}
 
-Die Ergebnisse, die \textsc{SN-Evolution-Cut} erzielte, wenn das gegebene
-Sortiernetzwerk das \emph{bitone Mergesort}-Netzwerk war
-(Abschnitt~\ref{sect:sn-evolution-cut:bs}), waren sehr wirr. Beispielsweise
-ist bei dem Netzwerk in Abbildung~\ref{fig:32-ec-from-bs64} nicht ersichtlich,
-wie und warum es jede beliebige Eingabe sortiert.
+Eine weitere interessante Eingabe für \textsc{SN-Evolution-Cut} ist das
+\emph{Pairwise-Sorting}-Netzwerk \ps{n}, das \textit{Ian
+Parberry} in seiner Arbeit „The Pairwise Sorting Network“ \cite{P1992}
+definiert. Einerseits wurde in Abschnitt~\ref{sect:anzahl_schnittmuster}
+gezeigt, dass es für \ps{n} sehr viele \emph{unterschiedliche} Schnittmuster
+gibt. Andererseits sind die Sortiernetzwerke, die nach \textit{Parberrys}
+Methode erzeugt werden, genauso schnell und effizient wie das
+\emph{Odd-Even-Mergesort}-Netzwerk, wenn die Leitungszahl $n = 2^d$ eine
+Zweierpotenz ist.
+
+% Effizienz
+
+Für viele Kombinationen von \ps{n} und $k$ sind die Sortiernetzwerke, die
+\textsc{SN-Evolution-Cut} ausgibt, weniger effizient als das entsprechende
+\ps{m}-Netzwerk. Für einige Kombinationen werden jedoch auch effizientere
+Netzwerke generiert, beispielsweise für $m = 11$ und $m = 20$. Die Effizienz
+der Sortiernetzwerke, die \textsc{SN-Evolution-Cut} auf Basis des
+\emph{Pairwise-Sorting}-Netzwerks berechnet, ist tabellarisch in
+Tabelle~\ref{tbl:ec-ps-efficiency} dargestellt. 
 
 \begin{table}
   \begin{center}
@@ -2532,16 +2626,180 @@ wie und warum es jede beliebige Eingabe sortiert.
     Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \ps{n} an, jede
     Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
     Ausgabenetzwerks.}
+  \label{tbl:ec-ps-efficiency}
+\end{table}
+
+% Beispiel Effizienz
+
+Zwei Ergebnisse, die effizienter als die entsprechenden
+\emph{Pairwise-Sorting}-Netzwerke sind, zeigt
+Abbildung~\ref{fig:ec-ps-efficient_networks}. Sie erreichen die
+Geschwindigkeit und Effizienz des \emph{Odd-Even-Mergesort}-Netzwerks mit der
+entsprechenden Leitungszahl. Bei größeren Netzwerken, beispielsweise $m = 19$,
+ist dies mit der in Tabelle~\ref{tbl:ec-ps-efficiency} dargestellten Größe der
+Schnittmuster noch nicht zu beobachten.
+
+\begin{figure}
+  \centering
+  \subfigure[11-Sortiernetzwerk aus 37~Komparatoren in 10~Schichten. Das
+    Netzwerk wurde von \textsc{SN-Evolution-Cut} aus dem
+    \emph{Pairwise-Sorting}-Netzwerk \ps{13}
+    erzeugt.]{\input{images/11-ec-from-ps13.tex}}
+  \subfigure[12-Sortiernetzwerk aus 41~Komparatoren in 10~Schichten. Das
+    Netzwerk wurde von \textsc{SN-Evolution-Cut} aus dem
+    \emph{Pairwise-Sorting}-Netzwerk \ps{16}
+    erzeugt.]{\input{images/12-ec-from-ps16.tex}}
+  \caption{Zwei effiziente Sortiernetzwerke, die durch Schnittmuster, die von
+    \emph{SN-Evolution-Cut} berechnet wurden, aus dem
+    \emph{Pairwise-Sorting}-Netzwerk \ps{n} erzeugt wurden.}
+  \label{fig:ec-ps-efficient_networks}
+\end{figure}
+
+% Wie viele Schnitte man braucht.
+
+Bei welchen Parametern \textsc{SN-Evolution-Cut} effiziente
+19-Sortiernetzwerke findet, ist Tabelle~\ref{tbl:ec-ps-19} zu entnehmen. Für
+$n = 31$, $k = 12$ und $n = 32$, $k = 13$ werden 19-Sortiernetzwerke mit der
+selben Effizienz und Geschwindigkeit wie \oes{19} erzeugt. Das
+19-Sortiernetzwerk, das auf diese Art und Weise aus \ps{32} erzeugt wurde, ist
+in Abbildung~\ref{fig:19-ec-from-ps32} dargestellt.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|r|r|}
+    \hline
+    $n$ & Komp. & Schichten \\
+    \hline
+          20 &  97 & 15 \\
+          21 &  96 & 15 \\
+          22 &  96 & 15 \\
+          23 &  97 & 14 \\
+          24 &  96 & 14 \\
+          25 &  93 & 14 \\
+          26 &  92 & 14 \\
+          27 &  94 & 14 \\
+          28 &  94 & 14 \\
+          29 &  92 & 14 \\
+          30 &  92 & 14 \\
+          \rowcolor{green!10!white!95!black}
+          31 &  91 & 14 \\
+          \rowcolor{green!10}
+          32 &  91 & 14 \\
+          33 & 101 & 15 \\
+          34 & 104 & 15 \\
+          35 & 106 & 15 \\
+          36 & 107 & 15 \\
+          37 & 106 & 15 \\
+          38 & 102 & 15 \\
+    \hline
+     \ps{19} &  97 & 15 \\
+    \oes{19} &  91 & 14 \\
+    \hline
+    \end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren und Schichten von 19-Sortiernetzwerken, die
+    von \textsc{SN-Evolution-Cut} aus \ps{n}, $n = 20, \dots, 38$ erzeugt
+    wurden.}
+  \label{tbl:ec-ps-19}
+\end{table}
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-ec-from-ps32.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 91~Komparatoren in
+    14~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution-Cut} aus dem \emph{Pairwise-Sorting}-Netzwerk
+    $\operatorname{PS}(32)$ erzeugt.}
+  \label{fig:19-ec-from-ps32}
+\end{figure}
+
+An den Daten in Tabelle~\ref{tbl:ec-ps-19} fällt auf, dass die Effizienz und
+Geschwindigkeit der Ergebnisse für $n > 32$ schlechter werden. Das
+\emph{Pairwise-Sorting}-Netzwerk ist Leitungszahlen, die Zweierpotenzen sind,
+besonders effizient und schnell. Um der Vermutung nachzugehen, dass der
+\textsc{SN-Evolution-Cut}-Algorithmus für $\ps{n = 2^d}$ besonders effiziente
+Schnittmuster findet, wurde \textsc{SN-Evolution-Cut} mit \ps{32} und $k = 1
+\dots 16$ gestartet. Die Ergebnisse sind in Tabelle~\ref{tbl:ec-ps-32}
+zusammengefasst. \todo{Tabelle einfügen.}
+
+% Geschwindigkeit
+
+Die Schnittmuster, die \textsc{SN-Evolution-Cut} für das
+\emph{Pairwise-Sorting}-Netzwerk berechnet, können zu schnelleren
+Sortiernetzwerken als \ps{m} führen. Beispielsweise konnte aus \ps{24} ein
+18-Sortiernetzwerk erzeugt werden, das mit 13~Schichten zwei parallele
+Schritte im Vergleich zu \ps{18} einspart. Eine Darstellung dieses
+Sortiernetzwerks befindet sich in Abbildung~\ref{fig:18-ec-from-ps24}. Für
+andere $m$ wurde die Geschwindigkeit des \emph{Pairwise-Sorting}-Netzwerks
+nicht übertroffen und im Fall von $m = 16$ wurde die Geschwindigkeit nicht
+einmal erreicht.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+    \hline
+        &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+    \hline
+      9 &   6 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+     10 &   6 &  10 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+     11 &   6 &   9 &  10 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+     12 &   6 &   8 &   9 &  10 &     &     &     &     &     &     &     &     &     &     &     &     \\
+     13 &   6 &   8 &   9 &  10 &  10 &     &     &     &     &     &     &     &     &     &     &     \\
+     14 &   6 &   8 &   9 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     &     \\
+     15 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     \\
+     16 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     \\
+     17 &   7 &   8 &   9 &  10 &  10 &  11 &  11 &  11 &  11 &     &     &     &     &     &     &     \\
+     18 &   7 &   8 &   9 &  10 &  10 &  11 &  11 &  11 &  11 &  15 &     &     &     &     &     &     \\
+     19 &   7 &   8 &   9 &  10 &  10 &  11 &  11 &  11 &  11 &  15 &  15 &     &     &     &     &     \\
+     20 &   7 &   8 &   9 &  10 &  10 &  11 &  11 &  11 &  11 &  15 &  15 &  15 &     &     &     &     \\
+     21 &   6 &   8 &   9 &  10 &  10 &  11 &  11 &  11 &  12 &  14 &  15 &  15 &  15 &     &     &     \\
+     22 &   6 &   8 &   9 &  10 &  10 &  11 &  11 &  11 &  12 &  14 &  14 &  15 &  15 &  15 &     &     \\
+     23 &   6 &   9 &   9 &  10 &  10 &  10 &  11 &  11 &  11 &  13 &  14 &  14 &  15 &  15 &  15 &     \\
+     24 &   6 &   9 &   9 &  10 &  10 &  10 &  11 &  11 &  11 &  13 &  13 &  14 &  14 &  15 &  15 &  15 \\
+     \hline
+ \ps{m} &   6 &  10 &  10 &  10 &  10 &  10 &  10 &  10 &  10 &  15 &  15 &  15 &  15 &  15 &  15 &  15 \\
+    \hline
+    \end{tabular}
+  \end{center}
+  \caption{Anzahl der Schichten der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des
+    \emph{Pairwise-Sorting}-Netzwerks und unterschiedlichen Werten für~$k$.
+    Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \ps{n} an, jede
+    Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
+    Ausgabenetzwerks.}
   \label{tbl:ec-ps-speed}
 \end{table}
 
-Das \emph{Pairwise-Sorting-Netzwerk} $\operatorname{PS}(n)$, das \textit{Ian
-Parberry} in seiner Arbeit „The Pairwise Sorting Network“ \cite{P1992}
-definiert, verhält sich anders. Startet man \textsc{SN-Evolution-Cut} mit
-$\operatorname{PS}(32)$ und der Vorgabe, 16~Leitungen zu entfernen, erhält man
-ein Sortiernetzwerk, das die gleiche Anzahl Komparatoren und Schichten hat wie
-$\operatorname{PS}(16)$ und $\operatorname{OES}(16)$. Eines dieser
-Sortiernetzwerke ist in Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
+% Beispiel Geschwindigkeit
+
+\begin{figure}
+  \begin{center}
+    \input{images/18-ec-from-ps24.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 18~Leitungen und 89~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution-Cut} aus dem \emph{Pairwise-Sorting}-Netzwerk
+    $\operatorname{PS}(24)$ erzeugt.}
+  \label{fig:18-ec-from-ps24}
+\end{figure}
+
+% 2-er Potenz
+
+Die Ergebnisse, die \textsc{SN-Evolution-Cut} erzielte, wenn das gegebene
+Sortiernetzwerk das \emph{bitone Mergesort}-Netzwerk war
+(Abschnitt~\ref{sect:sn-evolution-cut:bs}), waren sehr wirr. Beispielsweise
+ist bei dem Netzwerk in Abbildung~\ref{fig:32-ec-from-bs64} nicht ersichtlich,
+wie und warum es jede beliebige Eingabe sortiert.
+
+Bei dem \emph{Pairwise-Sorting}-Netzwerk $\ps{n=2^d}$ ist das anders. Startet
+man \textsc{SN-Evolution-Cut} mit $\operatorname{PS}(32)$ und der Vorgabe,
+16~Leitungen zu entfernen, erhält man ein Sortiernetzwerk, das die gleiche
+Anzahl Komparatoren und Schichten hat wie $\operatorname{PS}(16)$ und
+$\operatorname{OES}(16)$. Eines dieser Sortiernetzwerke ist in
+Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
 
 \begin{figure}
   \begin{center}
@@ -2554,7 +2812,7 @@ Sortiernetzwerke ist in Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
   \label{fig:16-ec-from-ps32}
 \end{figure}
 
-Obwohl das \emph{Pairwise-Sorting-Netzwerk} den \emph{Odd-Even}-Mischer nicht
+Obwohl das \emph{Pairwise-Sorting}-Netzwerk den \emph{Odd-Even}-Mischer nicht
 einsetzt und auch nicht auf einem Mischer basiert, ist das
 \emph{Odd-Even-Merge}-Netzwerk $\operatorname{OEM}(8,8)$ im Sortiernetzwerk in
 Abbildung~\ref{fig:16-ec-from-ps32} eindeutig erkennbar (Schichten~7--10). In