SN-Evolution-Cut: Referenzen von Schnitt- und SN-Darstellung aufeinander.
[diplomarbeit.git] / diplomarbeit.tex
index 27be82a..5130f0c 100644 (file)
@@ -1279,8 +1279,9 @@ Abbildung~\ref{fig:16-green} dargestellt. Das \emph{schnellste} bekannte
 16-Sortiernetzwerk besteht aus 61~Komparatoren in nur 9~Schichten und ist in
 Abbildung~\ref{fig:16-voorhis} zu sehen.
 
-Eine Gütefunktion, die die beiden Ziele "`effizient"' und "`schnell"'
-berücksichtigen kann, hat die folgende allgemeine Form:
+\textsc{SN-Evolution} verwendet eine Gütefunktion, die die beiden Ziele
+"`effizient"' und "`schnell"' berücksichtigen kann. Sie hat die folgende
+generelle Form:
 \begin{equation}
   \operatorname{Guete}(S) = w_{\mathrm{Basis}}
                     + w_{\mathrm{Komparatoren}} \cdot \left|S\right|_\mathrm{Komparatoren}
@@ -1305,7 +1306,7 @@ verschiedener Netzwerke kleiner, was die {\em Exploration}, das Absuchen des
 gesamten Lösungsraums, begünstigt. Wählt man $w_{\mathrm{Basis}}$ hingegen
 klein -- in Abhängigkeit von den anderen beiden Parametern sind auch negative
 Werte möglich -- werden die relativen Unterschiede groß. Dadurch wird die {\em
-Exploitation}, das Finden (lokaler) Optima, bevorzugt.
+Exploitation}, das Streben zu (lokalen) Optima, verstärkt.
 
 Diese Parameter haben einen großen Einfluss auf die Geschwindigkeit, mit der
 der \textsc{SN-Evolution}-Algorithmus konvergiert und ob er tatsächlich gute
@@ -1316,10 +1317,25 @@ Leitungszahlen und Mischer-Typen experimentiert werden muss.
 Als guter Standardansatz für \textsc{SN-Evolution} haben sich die folgenden
 Werte herausgestellt:
 \begin{eqnarray*}
-w_{\mathrm{Basis}} &=& 0 \\
-w_{\mathrm{Komparatoren}} &=& 1 \\
-w_{\mathrm{Schichten}} &=& \left|S\right|_\mathrm{Leitungen}
+  w_{\mathrm{Basis}}        &=& 0 \\
+  w_{\mathrm{Komparatoren}} &=& 1 \\
+  w_{\mathrm{Schichten}}    &=& \left|S\right|_\mathrm{Leitungen}
 \end{eqnarray*}
+Sofern nicht anders angegeben, werden diese Werte im Folgenden zur Bewertung
+von Sortiernetzwerken verwendet. Die Bewertungsfunktion bevorzugt mit diesen
+Konstanten \emph{schnelle} Sortiernetzwerke, da das Einsparen einer Schicht
+ein höheres Gewicht als das Einsparen von Komparatoren hat.
+
+Wenn der \textsc{SN-Evolution}-Algorithmus nach \emph{effizienten}
+Sortiernetzwerken suchen soll, werden alternative Werte für die Konstanten der
+Bewertungsfunktion verwendet. Die Werte
+\begin{eqnarray*}
+  w_{\mathrm{Basis}}        &=& 0 \\
+  w_{\mathrm{Komparatoren}} &=& 2 \\
+  w_{\mathrm{Schichten}}    &=& 1
+\end{eqnarray*}
+geben dem Einsparen eines Komparators ein höheres Gewicht als dem Einsparen
+einer Schicht. \todo{Fehler hier noch was?}
 
 \subsection{Selektion}
 
@@ -1402,37 +1418,12 @@ wurde beim \textsc{SN-Evolution}-Algorithmus auf eine Mutation verzichtet.
 
 \subsection[Bitoner Mischer]{Versuche mit dem bitonen Mischer}
 
-\begin{figure}
-  \begin{center}
-    \input{images/16-e1-bitonic-1296542566.tex}
-  \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 67~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution} unter Verwendung des \emph{bitonen Mischers}
-    erzeugt.}
-  \label{fig:16-e1-bitonic-1296542566}
-\end{figure}
-
 Wenn \textsc{SN-Evolution} mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk
 als Eingabe gestartet wird und in der Rekombinationsphase den \emph{bitonen
-Mischer} verwendet, gibt der Algorithmus Sortiernetzwerke wie das in
-Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte zurück.
-
-Viele der Sortiernetzwerke, die von \textsc{SN-Evolution} in dieser
-Konfiguration gefunden werden, sind effizienter als das \emph{bitone
-Mergesort}-Netzwerk \bs{n}, das ebenfalls auf dem \emph{bitonen
-Merge}-Netzwerk \bm{n} beruht. Das in
-Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte 16-Sortiernetzwerk
-benötigt 67~Komparatoren, 13~Komparatoren weniger als \bs{n}.
-
-Wenn die Gütefunktion so gewählt ist, dass sie schnelle Sortiernetzwerke
-bevorzugt, können Netzwerke zurückgegeben werden, die schneller als \bs{n}
-sind. Viele der schnellen Sortiernetzwerke sind außerdem effizienter als
-\bs{n}. Das Sortiernetzwerk mit $n = 23$ Leitungen benötigt mit
-134~Komparatoren jedoch einen Komparator mehr als \bs{23}. Die Daten von
-schnellen Sortiernetzwerken, die \textsc{SN-Evolution} mit dem \emph{bitonen
-Merge}-Netzwerk erzeugt hat, sind in Tabelle~\ref{tbl:sn-ev-bm-fast}
-aufgelistet.
+Mischer} verwendet, gibt der Algorithmus \emph{effiziente} und in einigen
+Fällen \emph{schnelle} Sortiernetzwerke aus. Die Ergebnisse des
+\textsc{SN-Evolution}-Algorithmus unter Verwendung des \emph{bitonen Mischers}
+sind in Tabelle~\ref{tbl:sn-ev-bm-fast} zusammengefasst.
 
 \begin{table}\label{tbl:sn-ev-bm-fast}
 \begin{center}
@@ -1443,23 +1434,23 @@ Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \bm{n}} & \multicolumn{2}{|l|
 \cline{2-5}
     ($n$) & Komp. & Schichten & Komp. & Schichten \\
 \hline
-        8 & \gcell  20 &         6 &         24 &         6 \\
-        9 & \Gcell  26 &         8 &         28 &         8 \\
-       10 & \gcell  31 & \gcell  8 &         33 &         9 \\
-       11 & \Gcell  37 & \Gcell  9 &         39 &        10 \\
-       12 & \gcell  42 & \gcell  9 &         46 &        10 \\
-       13 & \Gcell  48 &        10 &         53 &        10 \\
-       14 & \gcell  54 &        10 &         61 &        10 \\
-       15 & \Gcell  61 &        10 &         70 &        10 \\
-       16 & \gcell  67 &        10 &         80 &        10 \\
-       17 & \Gcell  76 &        12 &         85 &        12 \\
-       18 & \gcell  87 & \gcell 12 &         91 &        13 \\
-       19 & \Gcell  93 & \Gcell 13 &         98 &        14 \\
-       20 & \gcell 104 & \gcell 13 &        106 &        14 \\
-       21 & \Gcell 109 & \Gcell 14 &        114 &        15 \\
-       22 & \gcell 118 & \gcell 14 &        123 &        15 \\
-       23 &        134 & \Gcell 14 & \Gcell 133 &        15 \\
-       24 & \gcell 133 &        15 &        144 &        15 \\
+        8 & \gcell  20 &         6 &  24 &  6 \\
+        9 & \Gcell  26 &         8 &  28 &  8 \\
+       10 & \gcell  31 & \gcell  8 &  33 &  9 \\
+       11 & \Gcell  37 & \Gcell  9 &  39 & 10 \\
+       12 & \gcell  42 & \gcell  9 &  46 & 10 \\
+       13 & \Gcell  48 &        10 &  53 & 10 \\
+       14 & \gcell  54 &        10 &  61 & 10 \\
+       15 & \Gcell  61 &        10 &  70 & 10 \\
+       16 & \gcell  67 &        10 &  80 & 10 \\
+       17 & \Gcell  76 &        12 &  85 & 12 \\
+       18 & \gcell  87 & \gcell 12 &  91 & 13 \\
+       19 & \Gcell  93 & \Gcell 13 &  98 & 14 \\
+       20 & \gcell 104 & \gcell 13 & 106 & 14 \\
+       21 & \Gcell 109 & \Gcell 14 & 114 & 15 \\
+       22 & \gcell 118 & \gcell 14 & 123 & 15 \\
+       23 & \Gcell 129 & \Gcell 14 & 133 & 15 \\
+       24 & \gcell 133 &        15 & 144 & 15 \\
 \hline
 \end{tabular}
 \caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
@@ -1471,19 +1462,89 @@ Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \bm{n}} & \multicolumn{2}{|l|
 \end{center}
 \end{table}
 
-\subsection[Odd-Even-Mischer]{Versuche mit dem Odd-Even-Mischer}
+Alle Sortiernetzwerke, die von \textsc{SN-Evolution} in dieser Konfiguration
+gefunden wurden, waren \emph{effizienter} als das \emph{bitone
+Mergesort}-Netzwerk \bs{n}, das ebenfalls auf dem \emph{bitonen
+Merge}-Netzwerk \bm{n} beruht. Zum Beispiel benötigt das in
+Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte 16-Sortiernetzwerk
+67~Komparatoren, 13~Komparatoren weniger als \bs{n}.
 
 \begin{figure}
   \begin{center}
-    \input{images/16-e1-oddeven-1296543330.tex}
+    \input{images/16-e1-bitonic-1296542566.tex}
   \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
+  \caption{Sortiernetzwerk mit 16~Leitungen und 67~Komparatoren in
     10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution} unter Verwendung des \emph{Odd-Even}-Mischers
+    \textsc{SN-Evolution} unter Verwendung des \emph{bitonen Mischers}
     erzeugt.}
-  \label{fig:16-e1-oddeven-1296543330}
+  \label{fig:16-e1-bitonic-1296542566}
 \end{figure}
 
+Wenn die Gütefunktion so gewählt ist, dass sie schnelle Sortiernetzwerke
+bevorzugt, werden in einigen Fällen Netzwerke zurückgegeben, die
+\emph{schneller} und \emph{effizienter} als \bs{n} sind. Das
+19-Sortiernetzwerk in Abbildung~\ref{fig:19-e1-bm-fast} besitzt beispielsweise
+nur 13~Schichten und benötigt damit einen parallelen Schritt weniger als
+\bs{19}.
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-e1-bm-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 93~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{bitonen Mischers} erzeugt.}
+  \label{fig:19-e1-bm-fast}
+\end{figure}
+
+\subsection[Odd-Even-Mischer]{Versuche mit dem Odd-Even-Mischer}
+
+Die folgenden Ergebnisse wurden erzielt, indem \textsc{SN-Evolution} mit dem
+\emph{Odd-Even-Transpositionsort}-Netzwerk als Eingabe gestartet wurde und in
+der Rekombinationsphase das \emph{Odd-Even-Merge}-Netzwerk verwendete. So
+erzeugt der Algorithmus entweder Sortiernetzwerke, die genauso schnell und
+effizient wie das \oes{n}-Netzwerk, oder Sortiernetzwerke, die schneller aber
+weniger effizient als das \oes{n}-Netzwerk sind. Die Ergebnisse von
+\textsc{SN-Evolution} mit dem \emph{Odd-Even}-Mischer sind in
+Tabelle~\ref{tbl:sn-ev-oem-fast} zusammengefasst.
+
+\begin{table}\label{tbl:sn-ev-oem-fast}
+\begin{center}
+\rowcolors{4}{black!5}{}
+\begin{tabular}{|r|r|r|r|r|}
+\hline
+Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \oem{n}} & \multicolumn{2}{|l|}{\oes{n}} \\
+\cline{2-5}
+          & Komp. & Schichten & Komp. & Schichten \\
+\hline
+        8 &   19 &         6 &         19 &         6 \\
+        9 &   26 &         8 &         26 &         8 \\
+       10 &   31 &         9 &         31 &         9 \\
+       11 &   38 & \Gcell  9 & \Gcell  37 &        10 \\
+       12 &   43 & \gcell  9 & \gcell  41 &        10 \\
+       13 &   48 &        10 &         48 &        10 \\
+       14 &   53 &        10 &         53 &        10 \\
+       15 &   59 &        10 &         59 &        10 \\
+       16 &   63 &        10 &         63 &        10 \\
+       17 &   74 &        12 &         74 &        12 \\
+       18 &   82 &        13 &         82 &        13 \\
+       19 &   93 & \Gcell 13 & \Gcell  91 &        14 \\
+       20 &   97 &        14 &         97 &        14 \\
+       21 &  108 & \Gcell 14 & \Gcell 107 &        15 \\
+       22 &  117 & \gcell 14 & \gcell 114 &        15 \\
+       23 &  127 & \Gcell 14 & \Gcell 122 &        15 \\
+       24 &  128 &        15 & \gcell 127 &        15 \\
+\hline
+\end{tabular}
+\caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
+  unter Verwendung des \emph{Odd-Even-Merge}-Netzwerks \oem{n}. Der
+  Algorithmus wurde mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n}
+  gestartet und nach 2.500.000 Iterationen beendet. Die Bewertungsfunktion
+  nutzte die Konstanten $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} =
+  1$, $w_{\mathrm{Schichten}} = n$.}
+\end{center}
+\end{table}
+
 Im vorherigen Abschnitt wurde gezeigt, dass der
 \textsc{SN-Evolution}-Algorithmus unter Verwendung des \emph{bitonen Mischers}
 Sortiernetzwerke erzeugen kann, die effizienter als das rekursiv aus dem
@@ -1493,16 +1554,34 @@ erzielen. Die Sortiernetzwerke, die \textsc{SN-Evolution} unter Verwendung des
 \emph{Odd-Even-Merge}-Netzwerks findet, erreichen das
 \emph{Odd-Even-Mergesort}-Netzwerk bezüglich Effizienz, übertreffen es aber
 nicht. Ein Beispiel für ein entsprechendes Sortiernetzwerk ist in
-Abbildung~\ref{fig:16-e1-oddeven-1296543330} zu sehen.
+Abbildung~\ref{fig:16-e1-oem-fast} dargestellt.
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-e1-oem-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution} unter Verwendung des \emph{Odd-Even}-Mischers
+    erzeugt.}
+  \label{fig:16-e1-oem-fast}
+\end{figure}
 
 Mit einer Gütefunktion, die schnelle Sortiernetzwerke bevorzugt, ist es auch
 mit dem \emph{Odd-Even}-Mischer möglich, dass \textsc{SN-Evolution}
-Sortiernetzwerke zurück gibt, die schneller als \oes{n} sind. Dies geschieht
-beispielsweise bei $n = 11$ und $n = 12$: für diese Leitungszahlen gibt
-\textsc{SN-Evolution} Sortiernetzwerke aus, die nur 9~Schicten benötigen.
-\oes{11} und \oes{12} benötigen jeweils 10~Schichten. Eine Auflistung der
-Ergebnisse von \textsc{SN-Evolution} mit dem \emph{Odd-Even}-Mischer befindet
-sich in Tabelle~\ref{tbl:sn-ev-oem-fast}.
+Sortiernetzwerke zurück gibt, die schneller als \oes{n} sind. Beispielsweise
+benötigt das 19-Sortiernetzwerk, das in Abbildung~\ref{fig:19-e1-oem-fast}
+dargestellt ist, nur 13~Schichten, während \oes{19} 14~Schichten benötigt.
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-e1-oem-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 93~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{Odd-Even}-Mischers erzeugt.}
+  \label{fig:19-e1-oem-fast}
+\end{figure}
 
 %\begin{figure}
 %\begin{center}
@@ -1536,43 +1615,6 @@ sich in Tabelle~\ref{tbl:sn-ev-oem-fast}.
 %\label{fig:10-e2-1239014566}
 %\end{figure}
 
-\begin{table}\label{tbl:sn-ev-oem-fast}
-\begin{center}
-\rowcolors{4}{black!5}{}
-\begin{tabular}{|r|r|r|r|r|}
-\hline
-Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \oem{n}} & \multicolumn{2}{|l|}{\oes{n}} \\
-\cline{2-5}
-          & Komp. & Schichten & Komp. & Schichten \\
-\hline
-        8 &   19 &         6 &         19 &         6 \\
-        9 &   26 &         8 &         26 &         8 \\
-       10 &   31 &         9 &         31 &         9 \\
-       11 &   38 & \Gcell  9 & \Gcell  37 &        10 \\
-       12 &   43 & \gcell  9 & \gcell  41 &        10 \\
-       13 &   48 &        10 &         48 &        10 \\
-       14 &   53 &        10 &         53 &        10 \\
-       15 &   59 &        10 &         59 &        10 \\
-       16 &   63 &        10 &         63 &        10 \\
-       17 &   74 &        12 &         74 &        12 \\
-       18 &   82 &        13 &         82 &        13 \\
-       19 &   93 & \Gcell 13 & \Gcell  91 &        14 \\
-       20 &   97 &        14 &         97 &        14 \\
-       21 &  108 & \Gcell 14 & \Gcell 107 &        15 \\
-       22 &  117 & \gcell 14 & \gcell 114 &        15 \\
-       23 &  129 & \Gcell 14 & \Gcell 122 &        15 \\
-       24 &  128 &        15 & \gcell 127 &        15 \\
-\hline
-\end{tabular}
-\caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
-  unter Verwendung des \emph{Odd-Even-Merge}-Netzwerks \oem{n}. Der
-  Algorithmus wurde mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n}
-  gestartet und nach 2.500.000 Iterationen beendet. Die Bewertungsfunktion
-  nutzte die Konstanten $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} =
-  1$, $w_{\mathrm{Schichten}} = n$.}
-\end{center}
-\end{table}
-
 \subsection{Zufälliger Mischer}
 
 Die Ergebnisse der beiden vorhergehenden Abschnitte zeigen, dass für einige
@@ -1584,15 +1626,9 @@ Netzwerk für $n = 18$ bei Verwendung des \emph{bitone Mischers} nur
 um das beste Ergebnis beider Konstruktionen zu erreichen.
 \textsc{SN-Evolution} kann zu diesem Zweck beim Zusammenfügen zweier
 Individuen zufällig zwischen dem \emph{bitonen Mischer} und dem
-\emph{Odd-Even}-Mischer wählen.
-
-Die Ergebnisse von \textsc{SN-Evolution} bei einer zufälligen Wahl des
-Mischers in der Rekombinationsphase sind in Tabelle~\ref{tbl:sn-ev-rnd-fast}
-zusammengefasst. Bei den Leitungszahlen 12, 19, 21, 22 und 23 hat der
-Algorithmus Netzwerke mit einer Effizienz erzeugt, die mit nur einem
-Mischertyp nicht erreicht wurde. Die Ergebnisse mit den Leitungszahlen 18 und
-20 erreichen die Geschwindigkeit der Netzwerke, die mit dem \emph{bitonen
-Mischer} generiert wurden, und verbessern gleichzeitig die Effizienz.
+\emph{Odd-Even}-Mischer wählen. Die Ergebnisse von \textsc{SN-Evolution} bei
+einer zufälligen Wahl des Mischers in der Rekombinationsphase sind in
+Tabelle~\ref{tbl:sn-ev-rnd-fast} zusammengefasst.
 
 \begin{table}\label{tbl:sn-ev-rnd-fast}
 \begin{center}
@@ -1620,19 +1656,69 @@ Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \bm{n}}
        20 &        104 & \gcell 13 & \gcell  97 &        14 &        101 & \gcell 13 \\
        21 &        109 &        14 &        108 &        14 & \Gcell 107 &        14 \\
        22 &        118 &        14 &        117 &        14 & \gcell 116 &        14 \\
-       23 &        134 &        14 &        129 &        14 & \Gcell 128 &        14 \\
+       23 &        129 &        14 & \Gcell 127 &        14 &        128 &        14 \\
        24 &        133 &        15 & \gcell 128 &        15 &        130 &        15 \\
 \hline
 \end{tabular}
 \caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
-  unter Verwendung der verschiedenen Mischer. Der Algorithmus wurde mit dem
+  unter Verwendung der beiden Mischer-Netzwerke. Der Algorithmus wurde mit dem
   \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n} gestartet und nach
   2.500.000 Iterationen beendet. Die Bewertungsfunktion nutzte die Konstanten
-  $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} = 1$,
+  $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} = 1$ und
   $w_{\mathrm{Schichten}} = n$.}
 \end{center}
 \end{table}
 
+Bei einigen Leitungszahlen kann der Algorithmus durch die Verfügbarkeit beider
+Mi\-scher-Netzwerke Sortiernetzwerke zurückgeben, die effizienter als die
+vorherigen Ergebnisse sind. Beispielsweise ist das 19-Sortiernetzwerk in
+Abbildung~\ref{fig:19-e1-rnd-fast} mit 92~Komparatoren effizienter als die
+19-Sortiernetzwerke, die mit nur einem der beiden Mischer-Netzwerke erreicht
+wurden (Abbildungen~\ref{fig:19-e1-bm-fast} und~\ref{fig:19-e1-oem-fast}).
+
+\begin{figure}
+  \begin{center}
+    \input{images/19-e1-rnd-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 19~Leitungen und 92~Komparatoren in
+    13~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{bitonen Mischers} und des
+    \emph{Odd-Even}-Mischers erzeugt.}
+  \label{fig:19-e1-rnd-fast}
+\end{figure}
+
+Die Ergebnisse anderer Leitungszahlen erreichen die Geschwindigkeit der
+Ergebnisse, die mit dem \emph{bitonen Mischer} erzielt wurden. Die Effizienz
+liegt zwischen den Ergebnissen, die mit dem \emph{bitonen Mischer} erzielt
+wurden, und den Ergebnissen, die mit dem \emph{Odd-Even}-Mischer erzielt
+wurden. Beispielsweise ist das 18-Sortiernetzwerk in
+Abbildung~\ref{fig:18-e1-rnd-fast} so schnell wie das Ergebnis, das mit dem
+\emph{bitonen Mischer} ausgegeben wurde. Mit 83~Komparatoren liegt die
+Effizienz des Sortiernetzwerks zwischen den Ergebnissen, die mit dem
+\emph{bitonen Mischer} (87~Komparatoren), beziehungsweise dem
+\emph{Odd-Even}-Mischer (82~Komparatoren) erreicht werden konnten.
+
+\begin{figure}
+  \begin{center}
+    \input{images/18-e1-rnd-fast.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 18~Leitungen und 83~Komparatoren in
+    12~Schichten. Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution}
+    unter Verwendung des \emph{bitonen Mischers} und des
+    \emph{Odd-Even}-Mischers erzeugt.}
+  \label{fig:18-e1-rnd-fast}
+\end{figure}
+
+In einigen Fällen hat \textsc{SN-Evolution} in dieser Konfiguration
+Sortiernetzwerke ausgegeben, die weniger effizient und genauso schnell wie die
+bisherigen Ergebnisse unter Verwendung des \emph{Odd-Even}-Mischers sind.
+Prinzipiell könnte der Algorithmus in jeder Iteration zufällig den
+\emph{Odd-Even}-Mischers auswählen, um die selektierten Individuen zu
+rekombinieren. Das heißt, das die Ergebnisse auch bei einer zufälligen Wahl
+des Mischer-Netzwerks theoretisch erreicht werden können. Allerdings sind
+unter Umständen mehr Iterationen notwendig, bis die gleiche Effizienz erreicht
+wird.
+
 %\input{shmoo-aequivalenz.tex}
 
 \newpage
@@ -2088,10 +2174,12 @@ dargestellt.
   \begin{center}
     \input{images/16-ec-from-bs32.tex}
   \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 68~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution-Cut} aus dem \emph{bitonen Mergesort-Netzwerk}
-    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
+  \caption{Visualisierung eines 16-Schnittmusters, das von
+    \textsc{SN-Evolution-Cut} für das \emph{bitone Mergesort}-Netzwerk \bs{32}
+    berechnet wurde. Das resultierende Sortiernetzwerk besteht aus
+    68~Komparatoren in 10~Schichten und ist in
+    Abbildung~\ref{fig:16-ec-from-bs32-normalized} als
+    Standard-Sortiernetzwerk dargestellt.}
   \label{fig:16-ec-from-bs32}
 \end{figure}
 
@@ -2100,9 +2188,10 @@ dargestellt.
     \input{images/16-ec-from-bs32-normalized.tex}
   \end{center}
   \caption{Sortiernetzwerk mit 16~Leitungen und 68~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution-Cut} aus dem bitonen Mergesort-Netzwerk
-    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
+    10~Schichten. Das Netzwerk wurde mit einem 16-Schnittmuster, das von
+    \textsc{SN-Evolution-Cut} berechnet wurde, aus dem \emph{bitone
+    Mergesort}-Netzwerk \bs{32} erzeugt. Das Schnittmuster ist in
+    Abbildung~\ref{fig:16-ec-from-bs32} dargestellt.}
   \label{fig:16-ec-from-bs32-normalized}
 \end{figure}
 
@@ -2320,14 +2409,23 @@ $k = 10$, das 95~Komparatoren benötigt. Das Ergebnis, das auf Basis des
       27  &  91 & 14 \\
       28  &  91 & 14 \\
       29  &  95 & 13 \\
+      \rowcolor{green!10}
       30  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       31  &  93 & 13 \\
+      \rowcolor{green!10}
       32  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       33  &  93 & 13 \\
+      \rowcolor{green!10}
       34  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       35  &  93 & 13 \\
+      \rowcolor{green!10}
       36  &  93 & 13 \\
+      \rowcolor{green!10!white!95!black}
       37  &  93 & 13 \\
+      \rowcolor{green!10}
       38  &  93 & 13 \\
       \hline
  \bs{19}  &  98 & 14 \\