ToDos als solche markiert.
[diplomarbeit.git] / diplomarbeit.tex
index cdcba09..8307d46 100644 (file)
@@ -98,6 +98,7 @@ das hinbekomme bzw. Recht behalte.}
 
 \subsection{Motivation}\label{sect:motivation}
 
+\todo{Schreibe noch etwas zu …}
 \begin{itemize}
 \item Sortiernetzwerke sind toll, weil $\ldots$
 \item Sortiernetzwerke sind einfach erklärt, aber trotzdem kompliziert.
@@ -374,6 +375,8 @@ Bekannten (Abbildung~\ref{fig:13-juille}).
 
 Übersicht über bekannte konstruktive Sortiernetzwerke.
 
+\todo{Einleitungssatz}
+
 \subsection{Das Odd-Even-Transpositionsort-Netzwerk}
 \label{sect:odd_even_transpositionsort}
 
@@ -900,18 +903,6 @@ Al-Haj Baddar} und \textit{Kenneth~E. Batcher} in ihrer Arbeit „An 11-Step
 Sorting Network for 18~Elements“~\cite{BB2009} vorstellen, benötigt aber
 6~Komparatoren weniger.
 
-% 9   9
-% 9  18
-% 9  27
-% 9  36
-% 9  45
-% 8  53
-% 8  61
-% 7  68
-% 7  75
-% 6  81
-% 5  86
-
 Das Zusammenfassen von zwei Sortiernetzwerken durch Hintereinanderausführung
 ist nicht sinnvoll: Da die Ausgabe des ersten Sortiernetzwerks bereits
 sortiert ist, ist das zweite Sortiernetzwerk überflüssig. Eine
@@ -921,12 +912,6 @@ die Sortiereigenschaft. Die Sortiereigenschaft des resultierenden
 Komparatornetzwerks müsste überprüft werden, was nach heutigem Wissensstand
 nur mit exponentiellem Aufwand möglich ist.
 
-%\begin{itemize}
-%\item Mit dem Bitonic-Merge
-%\item Mit dem Odd-Even-Merge
-%\item Nach dem Pairwise sorting-network Schema.
-%\end{itemize}
-
 \subsection{Leitungen entfernen}
 \label{sect:leitungen_entfernen}
 
@@ -1257,7 +1242,7 @@ Auswahl := (leer)
 für jedes Individuum in Population
 {
   reziproke Güte := 1.0 / Guete(Individuum)
-  Wahrscheinlichkeit P := reziproke Güte / (reziproke Güte + Gütesumme)
+  Wahrscheinlichkeit P := reziproke Güte / (Gütesumme + reziproke Güte)
   Gütesumme := Gütesumme + reziproke Güte
 
   mit Wahrscheinlichkeit P
@@ -1367,12 +1352,7 @@ Abbildung~\ref{fig:16-e1-oddeven-1296543330} zu sehen. Ein Netzwerk, das
 $\operatorname{OES}(n)$ in mindestens einem Merkmal übertrifft, konnte jedoch
 nicht beobachtet werden.
 
-\begin{itemize}
-\item Güte von Sortiernetzwerken (Anzahl der Komparatoren, Anzahl der Schichten, kombiniert)
-\item Wie gut die Netzwerke werden, hängt stark vom verwendeten \emph{Mischer} ab.
-\item Ggf. Abschnitt „Shmoo-Äquivalenz“ kürzen und hier einbauen.
-\item Möglicherweise: Verwende den rekursiven Aufbau des \emph{Pairwise-Sorting}-Netzwerks um Sortiernetzwerke zu mergen.
-\end{itemize}
+\todo{Ggf. Abschnitt „Shmoo-Äquivalenz“ kürzen und hier einbauen.}
 
 %\begin{figure}
 %\begin{center}
@@ -1627,7 +1607,7 @@ wenig verwunderlich, dass \textsc{SN-Evolution-Cut} gestartet mit
 $\operatorname{OES}(32)$ sehr schnell ein gutes 16-Schnittmuster findet.
 
 Eines der eher zufälligen Schnittmuster ist $\operatorname{MIN}(1, 6, 11, 14,
-17, 23, 26, 29)$, $\operatorname{MAX}(2, 7, 8, 13, 18, 21, 27, 31)$. Das
+17, 23, 26, 29)$, $\operatorname{MAX}(2, 7, 8,$ $13, 18, 21, 27, 31)$. Das
 Schnittmuster ist in Abbildung~\ref{fig:16-ec-from-oes32-cut} veranschaulicht,
 das resultierende Netzwerk ist in Abbildung~\ref{fig:16-ec-from-oes32} zu sehen.
 
@@ -1714,7 +1694,7 @@ gib Netzwerk zurück
   \label{fig:markov-cycles-16}
 \end{figure}
 
-
+\todo{Schreibe noch etwas zu …}
 \begin{itemize}
   \item Beste erreichte Netzwerke (gleich zu \emph{OE-Mergesort}).
   \item Anzahl der erreichbaren Sortiernetzwerke.
@@ -1763,14 +1743,6 @@ gib Netzwerk zurück
 \end{figure}
 
 \newpage
-\section{Empirische Beobachtungen}
-
-\begin{itemize}
-\item So schnell konvergiert der Algorithmus.
-\item $\ldots$
-\end{itemize}
-
-\newpage
 \section{Ausblick}
 
 Die Möglichkeiten, die Evolutionäre Algorithmen bei der Optimierung von