s/nicht Null/ungleich Null/
[diplomarbeit.git] / diplomarbeit.tex
index f797cc2..9277deb 100644 (file)
@@ -1810,7 +1810,7 @@ Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet \emph{Schnittmuster}, die
 in Abschnitt~\ref{sect:anzahl_schnittmuster} definiert wurden, als Individuen.
 Ein Individuum besteht aus einer Liste von $n$~Zahlen, die entweder 1, $-1$
 oder 0 sind. Dieser Werte entsprechen Maximum, Minimum und unbelegt. Bei einem
-$k$-Schnittmuster sind genau $k$ Zahlen nicht Null.
+$k$-Schnittmuster sind genau $k$ Zahlen ungleich Null.
 
 Um zwei Individuen zu rekombinieren werden die ersten $r$~Werte des einen
 Schnittmusters und die letzten ${n-r}$~Schnitte des zweiten Schnittmusters
@@ -1825,6 +1825,15 @@ invertieren.
 \subsection[Bitones Mergesort-Netzwerk]{Versuche mit dem bitonen Mergesort-Netzwerk}
 \label{sect:sn-evolution-cut:bs}
 
+Wenn der \textsc{SN-Evolution-Cut}-Algorithmus mit dem \emph{bitonen
+Mergesort}-Netzwerk \bs{n} gestartet wird und $k$~Leitungen entfernen soll,
+ergeben die gefundenen Schnittmuster in vielen Fällen effizientere Netzwerke
+als \bs{n-k}. Wird \textsc{SN-Evolution-Cut} beispielsweise mit \bs{22} und $k
+= 6$ gestartet, resultiert das gefundene Schnittmuster in einem
+Sortiernetzwerk mit 67~Komparatoren, 13~Komparatoren weniger als \bs{16}
+benötigt. Eines der Sortiernetzwerke, die auf diese Art und Weise generiert
+wurde, ist in Abbildung~\ref{fig:16-ec-from-bs22} zu sehen.
+
 \begin{figure}
   \begin{center}
     \input{images/16-ec-from-bs22.tex}
@@ -1837,6 +1846,200 @@ invertieren.
   \label{fig:16-ec-from-bs22}
 \end{figure}
 
+Eine Übersicht über die Effizienz der Ergebnisse, die mit dem \emph{bitonen
+Mergesort}-Netzwerk als Eingabe für \textsc{SN-Evolution-Cut} erzielt wurden,
+gibt Tabelle~\ref{tbl:ec-bs-efficiency}. \textsc{SN-E\-vo\-lu\-tion-Cut} wurde
+mit \bs{n}, $n = 9 \dots 24$ und $k = 1 \dots (n-8)$ gestartet. Die Konstanten
+der Bewertungsfunktion waren $w_{\mathrm{Basis}} = 0$,
+$w_{\mathrm{Komparatoren}} = 1$ und $w_{\mathrm{Schichten}} = n$. In jeder
+Zeile befinden sich die Ergebnisse für ein Eingabenetzwerk, in den Spalten
+befinden sich die Ergebnisse für eine Leitungszahl $m=n-k$ des
+Ausgabenetzwerks. In den Zellen stehen jeweils die Anzahl der Komparatoren des
+resultierenden Netzwerks. Die letzte Zeile enthält die Anzahl der
+Komparatoren, die \bs{m} benötigt, um die Ergebnisse besser einordnen zu
+können.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+    \hline
+       &  8 &  9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 &  20 &  21 &  22 &  23 \\
+    \hline
+    9  & 21 &    &    &    &    &    &    &    &    &    &    &    &     &     &     &     \\
+    10 & 20 & 27 &    &    &    &    &    &    &    &    &    &    &     &     &     &     \\
+    11 & 20 & 27 & 32 &    &    &    &    &    &    &    &    &    &     &     &     &     \\
+    12 & 20 & 26 & 32 & 39 &    &    &    &    &    &    &    &    &     &     &     &     \\
+    13 & 20 & 26 & 32 & 39 & 45 &    &    &    &    &    &    &    &     &     &     &     \\
+    14 & 20 & 26 & 32 & 39 & 45 & 53 &    &    &    &    &    &    &     &     &     &     \\
+    15 & 20 & 26 & 32 & 39 & 45 & 53 & 61 &    &    &    &    &    &     &     &     &     \\
+    16 & 20 & 26 & 32 & 39 & 45 & 53 & 61 & 70 &    &    &    &    &     &     &     &     \\
+    17 & 20 & 26 & 32 & 37 & 43 & 50 & 57 & 65 & 74 &    &    &    &     &     &     &     \\
+    18 & 20 & 26 & 31 & 37 & 43 & 49 & 56 & 63 & 71 & 82 &    &    &     &     &     &     \\
+    19 & 20 & 26 & 31 & 37 & 43 & 48 & 55 & 62 & 70 & 79 & 88 &    &     &     &     &     \\
+    20 & 20 & 26 & 32 & 37 & 44 & 48 & 55 & 61 & 68 & 77 & 86 & 95 &     &     &     &     \\
+    21 & 20 & 26 & 32 & 37 & 44 & 48 & 55 & 61 & 68 & 77 & 85 & 94 & 103 &     &     &     \\
+    22 & 20 & 26 & 31 & 37 & 42 & 48 & 54 & 61 & 67 & 77 & 84 & 93 & 102 & 112 &     &     \\
+    23 & 20 & 26 & 31 & 37 & 42 & 48 & 54 & 61 & 68 & 76 & 84 & 93 & 102 & 112 & 122 &     \\
+    24 & 20 & 26 & 32 & 37 & 42 & 48 & 54 & 61 & 68 & 76 & 84 & 93 & 102 & 112 & 122 & 133 \\
+    \hline
+\bs{m} & 24 & 28 & 33 & 39 & 46 & 53 & 61 & 70 & 80 & 85 & 91 & 98 & 106 & 114 & 123 & 133 \\
+    \hline
+    \end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des \emph{bitonen
+    Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$. Jede Zeile gibt
+    die Ergebnisse für ein Eingabenetzwerk \bs{n} an, jede Spalte enthält die
+    Ergebnisse für $m=n-k$, die Anzahl der Leitungen des Ausgabenetzwerks.}
+  \label{tbl:ec-bs-efficiency}
+\end{table}
+
+Zu sehen ist, dass jedes einzelne Ergebnis von \textsc{SN-Evolution-Cut}
+mindestens so effizient wie das \emph{bitone Mergesort}-Netzwerk mit der
+gleichen Leitungszahl ist. Außerdem enthält jede Spalte (mit Ausnahme von
+$m=23$) ein Ergebnis, das effizienter als \bs{m} ist.
+
+In zahlreichen Fällen reicht das Entfernen einer einzigen Leitung aus, um ein
+effizientes Ergebnis zu erzielen. Das Ergebnis, das \textsc{SN-Evolution-Cut}
+gestartet mit \bs{20} und $k = 1$ erreicht, benötigt mit 95~Komparatoren
+3~weniger als \bs{19}.
+
+Bei anderen Größen ergeben erst größere~$k$ effiziente Sortiernetzwerke,
+beispielsweise bei $m = 10$: erst für $n = 18$, $k = 8$ wird ein
+Sortiernetzwerk mit 31~Komparatoren gefunden.
+
+\begin{figure}
+  \centering
+  \subfigure[10-Sortiernetzwerk aus 31~Komparatoren in 8~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{19} erzeugt.]{\input{images/10-ec-from-bs19-fast.tex}\label{fig:10-ec-from-bs19-fast}}
+  \subfigure[11-Sortiernetzwerk aus 37~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{18} erzeugt.]{\input{images/11-ec-from-bs18-fast.tex}\label{fig:11-ec-from-bs18-fast}}
+  \subfigure[12-Sortiernetzwerk aus 42~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{22} erzeugt.]{\input{images/12-ec-from-bs22-fast.tex}\label{fig:12-ec-from-bs22-fast}}
+  \subfigure[19-Sortiernetzwerk aus 92~Komparatoren in 13~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{37} erzeugt.]{\input{images/19-ec-from-bs37-fast.tex}\label{fig:19-ec-from-bs37-fast}}
+  \caption{Für einige Ziel-Leitungszahlen, unter anderem $m \in \{10, 11,
+  12, 19\}$, kann der \textsc{SN-Evolution-Cut}-Algorithmus Sortiernetzwerke
+  erzeugen, die \emph{schneller} und \emph{effizienter} als \bs{m} sind.}
+  \label{fig:ec-bs-fast_networks}
+\end{figure}
+
+Bei einigen Werten für die Ziel-Leitungsanzahl $m$ kann der
+\textsc{SN-Evolution-Cut}-Algorithmus Ergebnisse erzielen, die schneller als
+das entsprechende \emph{bitone Mergesort}-Netzwerk \bs{m} sind. In
+Tabelle~\ref{tbl:ec-bs-speed} sind die Schichten, die die Ergebnisse von
+\textsc{SN-Evolution-Cut} benötigen, um die Eingabe zu sortieren, aufgelistet.
+Jede Zeile enthält die Ergebnisse für ein Eingabenetzwerk \bs{n}, jede Spalte
+enthält die Ergebnisse für eine Ziel-Leitungszahl $m = n-k$. Die Zellen
+enthalten die Anzahl der Schichten des jeweiligen Ergebnis-Netzwerks.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+\begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+\hline
+    &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+\hline
+  9 &   6 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 10 &   6 &   8 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 11 &   6 &   8 &   9 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 12 &   6 &   8 &   9 &  10 &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 13 &   6 &   8 &   9 &  10 &  10 &     &     &     &     &     &     &     &     &     &     &     \\
+ 14 &   6 &   8 &   9 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     &     \\
+ 15 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     \\
+ 16 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     \\
+ 17 &   6 &   8 &   8 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     \\
+ 18 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &     &     &     &     &     &     \\
+ 19 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &     &     &     &     &     \\
+ 20 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &     &     &     &     \\
+ 21 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &     &     &     \\
+ 22 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &     &     \\
+ 23 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &     \\
+ 24 &   6 &   8 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &  15 \\
+\hline
+\bs{m}& 6 &   8 &   9 &  10 &  10 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &  15 \\
+\hline
+\end{tabular}
+  \end{center}
+  \caption{Anzahl der Schichten der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des \emph{bitonen
+    Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$. Jede Zeile gibt
+    die Ergebnisse für ein Eingabenetzwerk \bs{n} an, jede Spalte enthält die
+    Ergebnisse für $m=n-k$, die Anzahl der Leitungen des Ausgabenetzwerks.}
+  \label{tbl:ec-bs-speed}
+\end{table}
+
+Für die Ziel-Leitungszahlen 9, 10 und 11 wurden Schnittmuster gefunden, die
+schnelle Sortiernetzwerke erzeugen. Beispiele für schnelle Sortiernetzwerke,
+die mit den von \textsc{SN-Evolution-Cut} ausgegebenen Schnittmustern erzeugt
+werden können, sind in Abbildung~\ref{fig:ec-bs-fast_networks} dargestellt.
+
+Bei der Betrachtung der Effizienz wurde festgestellt, dass oft schon das
+Entfernen einer einzigen Leitung zu eines effizienteren Ergebnis als \bs{m}
+führt. Bei der Geschwindigkeit ist die Anzahl der Leitungen, die entfernt
+werden müssen, um schnellere Netzwerke zu erzielen, größer. Um eine Schicht
+einzusparen waren bei $m = 10$ und $m = 11$ $k = 6$ Schnitte notwendig. Bei $m
+= 9$ war sogar ein 7-Schnittmuster notwendig, um die Anzahl der Schichten zu
+reduzieren. Für schnelle \emph{und} effiziente Netzwerke musste $k$ teilweise
+noch größer gewählt werden.
+
+Die Effizienz und Geschwindigkeit der Sortiernetzwerke, die von
+\textsc{SN-Evolution-Cut} aus dem \emph{bitonen Mergesort}-Netzwerk erzeugten
+werden, ist für $m = 19$ und $n = 20 \dots 38$ ($k = 1 \dots 19$) in
+Tabelle~\ref{tbl:ec-bs-19} aufgelistet. Erst, wenn $k \geqq 6$ ist, wird im
+Vergleich zu \bs{19} eine Schicht eingespart. Für $n = 36$ ($k = 17$) und $n =
+37$ ($k = 18$) werden Sortiernetzwerke ausgegeben, die schneller als \bs{19}
+und \oes{19} sind und nur einen Komparator mehr als \oes{19} benötigen. Ein
+Beispiel für ein solches Netzwerk ist in
+Abbildung~\ref{fig:19-ec-from-bs37-fast} zu sehen.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|r|r|}
+    \hline
+    $n$ & Komp. & Schichten \\
+    \hline
+          20 & 95 & 14 \\
+          21 & 94 & 14 \\
+          22 & 93 & 14 \\
+          23 & 93 & 14 \\
+          24 & 93 & 14 \\
+          25 & 96 & 13 \\
+          26 & 96 & 13 \\
+          27 & 96 & 13 \\
+          28 & 96 & 13 \\
+          29 & 95 & 13 \\
+          30 & 96 & 13 \\
+          31 & 95 & 13 \\
+          32 & 96 & 13 \\
+          33 & 93 & 13 \\
+          34 & 94 & 13 \\
+          35 & 93 & 13 \\
+          \rowcolor{green!10}
+          36 & 92 & 13 \\
+         \rowcolor{green!10!white!95!black}
+          37 & 92 & 13 \\
+          38 & 93 & 13 \\
+    \hline
+    \bs{19}  & 98 & 14 \\
+    \oes{19} & 91 & 14 \\
+    \hline
+    \end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren und Schichten von 19-Sortiernetzwerken, die
+    von \textsc{SN-Evolution-Cut} aus \bs{n}, $n = 20, \dots, 38$ erzeugt
+    wurden. Für $k \geqq 6$ ergeben sich Sortiernetzwerke, die schneller als
+    \bs{19} sind. Mit $k \in \{14, 16, 19\}$ erreichen die Ergebnisse mit
+    13~Schichten die Effizienz der vorherigen
+    Ergebnisse mit 14~Schichten, mit $k = 17$ und $k = 18$ wird diese
+    Effizienz noch übertroffen. Ein 19-Sortiernetzwerk, das aus \bs{37}
+    auf diese Art erzeugt wurde, ist in
+    Abbildung~\ref{fig:19-ec-from-bs37-fast} dargestellt.}
+  \label{tbl:ec-bs-19}
+\end{table}
+
 \textit{Moritz Mühlenthaler} und \textit{Rolf Wanka} zeigen in~\cite{MW2010},
 wie man einen bitonen Mischer, der nach Batchers Methode konstruiert wurde,
 durch systematisches Entfernen von Leitungen in einen ebenfalls bitonen
@@ -1921,41 +2124,6 @@ Sortiernetzwerk benötigt lediglich 206~Komparatoren. Die Komparatoren aller
 dieser Netzwerke können in 15~Schichten angeordnet werden, so dass die
 Geschwindigkeit dieser Sortiernetzwerke gleich ist.
 
-Leider sind die Schnittmuster, die \textsc{SN-Evolution-Cut} ausgibt, sehr
-unregelmäßig. Bisher ist es nicht gelungen eine Konstruktionsanweisung für
-gute Schnittmuster anzugeben.
-
-Entscheidend für das Ergebnis eines Schnittmusters scheint beim \emph{bitonen
-Mergesort}-Netzwerk die Aufteilung der Minimum- und Maximumschnitte zu sein.
-Von Hundert 16-Schnittmustern für $\operatorname{BS}(32)$, die in
-Sortiernetzwerken mit 68~Komparatoren in 10~Schichten resultieren, hatten 73
-ein Verhältnis von $5/11$, 13 hatten ein Verhältnis von $4/12$ und 14 hatten
-ein Verhältnis von $3/13$ Minimum- beziehungsweise Maximumschnitten. Da sich
-die Schnittmuster aufgrund der Symmetrie des \emph{bitonen
-Mergesort}-Netzwerks leicht invertieren lassen, ist eine Fallunterscheidung --
-mehr Minimum- oder mehr Maximumschnitte -- nicht notwendig.
-
-\begin{figure}
-  \centering
-  \subfigure[11-Sortiernetzwerk aus 37~Komparatoren in 9~Schichten. Das
-  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{22} erzeugt.]{\input{images/11-ec-from-bs22-fast.tex}\label{fig:11-ec-from-bs22-fast}}
-  \subfigure[12-Sortiernetzwerk aus 42~Komparatoren in 9~Schichten. Das
-  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \bs{24} erzeugt.]{\input{images/12-ec-from-bs24-fast.tex}\label{fig:12-ec-from-bs24-fast}}
-  \caption{Startet man \textsc{SN-Evolution-Cut} mit \bs{22} und \bs{24}, kann
-  der Algorithmus schnelle Sortiernetzwerke ausgeben.}
-  \label{fig:11-12-ec-from-bs22-bs24}
-\end{figure}
-
-Verwendet man als Eingabe für \textsc{SN-Evolution-Cut} Instanzen des
-\emph{bitonen Mergesort}-Netzwerks, deren Leitungszahl keine Zweierpotenz ist,
-können Sortiernetzwerke zurückgegeben werden, die sowohl schneller als auch
-effizienter als das entsprechende \emph{bitone Mergesort}-Netzwerk sind. Die
-folgende Tabelle listet einige interessante Fälle auf. Die Eingabe für
-\textsc{SN-Evolution-Cut} war jeweils das \emph{bitone Mergesort}-Netzwerk mit
-der doppelten Leitungszahl. Die Abbildungen~\ref{fig:11-12-ec-from-bs22-bs24}
-und~\ref{fig:23-ec-from-bs46} zeigen beispielhaft ein 11-, 12- und
-23-Sortiernetzwerk, die aus \bs{22}, \bs{24} und \bs{46} generiert wurden.
-
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|}
 \hline
@@ -1987,6 +2155,20 @@ Leitungen  & Komparatoren & Schichten & Komparatoren & Schichten \\
   \label{fig:23-ec-from-bs46}
 \end{figure}
 
+Leider sind die Schnittmuster, die \textsc{SN-Evolution-Cut} ausgibt, sehr
+unregelmäßig. Bisher ist es nicht gelungen eine Konstruktionsanweisung für
+gute Schnittmuster anzugeben.
+
+Entscheidend für das Ergebnis eines Schnittmusters scheint beim \emph{bitonen
+Mergesort}-Netzwerk die Aufteilung der Minimum- und Maximumschnitte zu sein.
+Von Hundert 16-Schnittmustern für $\operatorname{BS}(32)$, die in
+Sortiernetzwerken mit 68~Komparatoren in 10~Schichten resultieren, hatten 73
+ein Verhältnis von $5/11$, 13 hatten ein Verhältnis von $4/12$ und 14 hatten
+ein Verhältnis von $3/13$ Minimum- beziehungsweise Maximumschnitten. Da sich
+die Schnittmuster aufgrund der Symmetrie des \emph{bitonen
+Mergesort}-Netzwerks leicht invertieren lassen, ist eine Fallunterscheidung --
+mehr Minimum- oder mehr Maximumschnitte -- nicht notwendig.
+
 Dass die Ergebnisse von \textsc{SN-Evolution-Cut} keine erkennbare Struktur
 haben, ist jedoch kein Eigenschaft des Algorithmus, sondern hängt insbesondere
 von der Eingabe ab. Wird \textsc{SN-Evolution-Cut} beispielsweise mit dem
@@ -2153,6 +2335,43 @@ Sortiernetzwerk das \emph{bitone Mergesort}-Netzwerk war
 ist bei dem Netzwerk in Abbildung~\ref{fig:32-ec-from-bs64} nicht ersichtlich,
 wie und warum es jede beliebige Eingabe sortiert.
 
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+\begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+\hline
+    &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+\hline
+  9 &  20 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 10 &  20 &  27 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 11 &  20 &  28 &  32 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 12 &  20 &  28 &  32 &  38 &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 13 &  19 &  27 &  31 &  37 &  41 &     &     &     &     &     &     &     &     &     &     &     \\
+ 14 &  19 &  27 &  31 &  37 &  41 &  48 &     &     &     &     &     &     &     &     &     &     \\
+ 15 &  19 &  27 &  31 &  37 &  41 &  48 &  53 &     &     &     &     &     &     &     &     &     \\
+ 16 &  19 &  27 &  31 &  37 &  41 &  48 &  53 &  59 &     &     &     &     &     &     &     &     \\
+ 17 &  21 &  29 &  32 &  39 &  43 &  51 &  57 &  64 &  68 &     &     &     &     &     &     &     \\
+ 18 &  22 &  29 &  32 &  39 &  43 &  52 &  58 &  65 &  69 &  80 &     &     &     &     &     &     \\
+ 19 &  23 &  29 &  32 &  39 &  43 &  52 &  58 &  65 &  69 &  80 &  88 &     &     &     &     &     \\
+ 20 &  23 &  29 &  32 &  39 &  43 &  52 &  58 &  65 &  69 &  80 &  88 &  97 &     &     &     &     \\
+ 21 &  20 &  30 &  34 &  38 &  44 &  51 &  57 &  64 &  74 &  82 &  87 &  96 & 102 &     &     &     \\
+ 22 &  20 &  30 &  34 &  38 &  46 &  51 &  57 &  64 &  72 &  82 &  89 &  96 & 102 & 112 &     &     \\
+ 23 &  20 &  27 &  34 &  38 &  42 &  51 &  57 &  66 &  72 &  83 &  89 &  97 & 102 & 112 & 119 &     \\
+ 24 &  20 &  27 &  34 &  38 &  42 &  51 &  57 &  64 &  72 &  82 &  89 &  96 & 102 & 112 & 119 & 127 \\
+\hline
+\ps{m}&19 &  27 &  32 &  38 &  42 &  48 &  53 &  59 &  63 &  79 &  88 &  97 & 103 & 112 & 119 & 127 \\
+\hline
+\end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des
+    \emph{Pairwise-Sorting}-Netzwerks und unterschiedlichen Werten für~$k$.
+    Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \ps{n} an, jede
+    Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
+    Ausgabenetzwerks.}
+  \label{tbl:ec-ps-fast}
+\end{table}
+
 Das \emph{Pairwise-Sorting-Netzwerk} $\operatorname{PS}(n)$, das \textit{Ian
 Parberry} in seiner Arbeit „The Pairwise Sorting Network“ \cite{P1992}
 definiert, verhält sich anders. Startet man \textsc{SN-Evolution-Cut} mit