Schönheitskorrekturen.
[diplomarbeit.git] / diplomarbeit.tex
index 5af502f..a1145c4 100644 (file)
@@ -228,34 +228,35 @@ beschäftigen.
 
 Viele {\em kombinatorische Optimierungsprobleme} sind schwer zu lösen -- die
 entsprechenden Entscheidungsprobleme liegen oft in der Komplexitätsklasse
-$NP$, sind also mit bekannten Verfahren nicht effizient exakt lösbar. Sollte
-sich herausstellen, dass diese Probleme nicht in der Komplexitätsklasse $P$
-liegen, wäre eine Konsequenz, dass es effiziente exakte Algorithmen für diese
-Probleme nicht geben kann. Falls sich hingegen herausstellt, dass diese
-Probleme in der Komplexitätsklasse~$P$ liegen, wird es mit großer
-Wahrscheinlichkeit noch einige Zeit dauern bis auch Algorithmen mit
-praktikablen Zeitkonstanten gefunden werden.
+\textit{NP}, das heißt das keine Verfahren bekannt sind, die das Problem
+effizient exakt lösbar. Sollte sich herausstellen, dass diese Probleme nicht
+in der Komplexitätsklasse~\textit{P} liegen, wäre eine Konsequenz, dass es
+effiziente exakte Algorithmen für diese Probleme nicht geben kann. Falls sich
+hingegen herausstellt, dass diese Probleme in der
+Komplexitätsklasse~\textit{P} liegen, wird es mit großer Wahrscheinlichkeit
+noch einige Zeit dauern, bis auch Algorithmen mit praktikablen Zeitkonstanten
+gefunden werden.
 
 Aus diesem Grund besteht die Notwendigkeit einen Kompromiss einzugehen: Statt
-die bzw. eine der {\em optimalen} Lösungen als einzige Ausgabe des Algorithmus
-zuzulassen, wird eine "`möglichst gute"' Lösung ausgegeben. Viele dieser
-Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur,
-beispielsweise immitieren die "`Ameisenalgorithmen"' das Verhalten von Ameisen
+die beziehungsweise eine der {\em optimalen} Lösungen als einzige Ausgabe des
+Algorithmus zuzulassen, wird eine "`möglichst gute"' Lösung ausgegeben. Viele
+dieser Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur,
+beispielsweise imitieren die "`Ameisenalgorithmen"' das Verhalten von Ameisen
 auf der Futtersuche um kurze Rundreisen auf Graphen zu berechnen.
 
 Bei {\em Evolutionären Algorithmen} stand die Evolution pate. Die Grundidee
-ist es, bestehende Lösungen zu neuen, unter Umständen besseren Lösungen zu
+ist, bekannte Lösungen zu neuen -- unter Umständen besseren -- Lösungen zu
 kombinieren. Dabei bedient man sich der in der Evolutionstheorie etablierten
-Nomenklatur, beispielsweise werden konkrete Lösungen für ein Problem häufig
-als {\em Individuum} bezeichnet.
+Nomenklatur, beispielsweise werden konkrete Lösungen für ein Problem als {\em
+Individuen} bezeichnet.
 
 Die Vorgehensweise lässt sich abstrakt wie folgt beschreiben. Aus einer
-bestehenden Lösungsmenge, der {\em Population} werden zufällig Lösungen
+bestehenden Lösungsmenge, der {\em Population}, werden zufällig Lösungen
 ausgesucht {\em (Selektion)} und zu einer neuen Lösung kombiniert ({\em
 Rekombination}). Unter Umständen wird die neue Lösung noch zufällig
 verändert {\em (Mutation)}, bevor sie in die bestehende Lösungsmenge
-integriert wird. Die Wahrscheinlichkeiten, beispielsweise bei der {\em
-Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
+eingefügt wird. Die verwendeten Wahrscheinlichkeiten, beispielsweise bei der
+{\em Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
 werden bessere Lösungen bevorzugt. Zur Bewertung dient die sogenannte {\em
 Gütefunktion}.
 
@@ -686,7 +687,7 @@ benötigt werden.
 Das \emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(n)$ besteht --~wie
 das \emph{bitone Mergesort-Netzwerk}~-- rekursiv aus kleineren Varianten von
 sich selbst und einem abschließenden \emph{Odd-Even-Mischer}. Die
-effizientesten Sortiernetzwerke in Bezuf auf Komparator- und Schichtzahl
+effizientesten Sortiernetzwerke in Bezug auf Komparator- und Schichtzahl
 entstehen, wenn die Anzahl der Leitungen jeweils halbiert wird. Somit besteht
 $\operatorname{OES}(n)$ aus
 $\operatorname{OES}\left(\left\lceil\frac{n}{2}\right\rceil\right)$,
@@ -716,7 +717,7 @@ die rekursiven Instanzen von $\operatorname{OEM}(4)$, der grüne Block markiert
 die Komparatoren, die in ersten Rekursionsschritt hinzugefügt werden.
 
 Im Allgemeinen ist die Anzahl der Komparatoren, die vom
-\emph{Odd-Even-Mergesort-Netzwerk} verwendet wird, $k(n)$, direkt aus der
+\emph{Odd-Even-Mergesort-Netz\-werk} verwendet wird, $k(n)$, direkt aus der
 Definition beziehungsweise der Konstruktionsanleitung abzulesen:
 \begin{displaymath}
   k(n) = k\left(\left\lceil\frac{n}{2}\right\rceil\right)
@@ -750,16 +751,24 @@ gilt.
 
 \subsection{Komprimieren}
 
-\todo{Aus theoretischer Sicht eigentlich eine Trivialität. Rausschmeißen?}
-
 Komparatoren, die unterschiedliche Leitungen miteinander vergleichen, können
 gleichzeitig ausgewertet werden, wie bereits in
-Abschnitt~\ref{sect:einleitung_sortiernetzwerke} beschrieben. Unter
-\emph{Komprimieren} wird eine (Neu-)Gruppierung in die kleinstmögliche Anzahl
-von \emph{Schichten} verstanden.
+Abschnitt~\ref{sect:einleitung_sortiernetzwerke} beschrieben. Durch manche
+Transformationen, insbesondere das Entfernen einer Leitung, das in
+Abschnitt~\ref{sect:leitungen_entfernen} beschrieben wird, kann es vorkommen,
+dass die Komparatoren eines Sortiernetzwerks nicht mehr in der
+kleinstmöglichen Anzahl von \emph{Schichten} angeordnet sind. Unter
+\emph{Komprimierung} wird eine (Neu-)Gruppierung der Komparatoren verstanden,
+die jeden Komparator so früh wie möglich ausführt. So entsteht die
+kleinstmögliche Anzahl von \emph{Schichten}, in die sich ein Sortiernetzwerk
+unterteilen lässt.
 
 Diese Anzahl ist insbesondere beim automatisierten Bewerten von
-Komparatornetzwerken interessant. \dots
+Komparatornetzwerken interessant, wie in Abschnitt~\ref{sect:bewertung}
+beschrieben. Die Anzahl der Schichten kann künstlich vergrößert werden, indem
+Komparatoren später angewandt werden. Deshalb sollte vor einer Bewertung, die
+die Anzahl der Schichten als Bewertungskriterium verwendet, immer eine
+Komprimierung durchgeführt werden.
 
 \subsection{Normalisieren}
 
@@ -776,8 +785,8 @@ Komparatornetzwerken interessant. \dots
 Ein \emph{Standard-Sortiernetzwerk} oder \emph{normalisiertes Sortiernetzwerk}
 ist ein Sortiernetzwerk, dessen Komparatoren alle in die selbe Richtung
 zeigen. Jedes Sortiernetzwerk kann in eine normaliesierte Variante
-transformiert werden. Dazu gibt beispielsweise \emph{Knuth} (\todo{Verweis})
-einen Algorithmus an.
+transformiert werden. Dazu gibt beispielsweise \emph{Donald~E. Knuth}
+in~\cite{KNUTH} einen Algorithmus an.
 
 Abbildung~\ref{fig:beispiel_normalisieren} zeigt das das
 bitone Sortiernetzwerk in zwei Varianten. Abbildung~\ref{fig:bitonic-nonstd}
@@ -861,7 +870,8 @@ nur mit exponentiellem Aufwand möglich ist.
 %\item Nach dem Pairwise sorting-network Schema.
 %\end{itemize}
 
-\subsection{Leitungen entfernen}\label{sect:leitungen_entfernen}
+\subsection{Leitungen entfernen}
+\label{sect:leitungen_entfernen}
 
 Im vorherigen Abschnitt haben wir gesehen, dass es mithilfe von
 \emph{Mischern} möglich ist, aus zwei Sortiernetzwerken mit je $n$~Eingängen
@@ -1061,7 +1071,7 @@ unterschiedlichen Schnittmuster abschätzen.
 
 \begin{figure}
   \begin{center}
-    \includegraphics[viewport=0 0 425 262,width=15cm]{images/collisions-10000-1000000-32.pdf}
+    \includegraphics[viewport=0 0 360 216,width=15cm]{images/collisions-10000-1000000-32.pdf}
   \end{center}
   \caption{Abschnätzung der unterschiedlichen Schnittmuster mit der
   \emph{Monte-Carlo-Methode} für $\operatorname{OES}(32)$ und
@@ -1127,16 +1137,16 @@ Um Sortiernetzwerke überhaupt optimieren zu können, muss zunächst die
 {\em Güte} eines Netzwerkes definiert werden. Prinzipiell gibt es zwei Ziele,
 die bei Sortiernetzwerken verfolgt werden können:
 \begin{itemize}
-  \item Möglichst wenige Komparatoren („billig“)
+  \item Möglichst wenige Komparatoren („effizient“)
   \item Möglichst wenige Schichten („schnell“)
 \end{itemize}
 
 Diese Ziele führen im Allgemeinen zu unterschiedlichen Netzwerken. Das
-billigste bekannte Sortiernetzwerk für 16~Eingänge besteht aus 60~Komparatoren
-in 10~Schichten. Das schnellste Netzwerk besteht aus 61~Komparatoren in nur
-9~Schichten.
+effizienteste bekannte Sortiernetzwerk für 16~Eingänge besteht aus
+60~Komparatoren in 10~Schichten. Das schnellste Netzwerk besteht aus
+61~Komparatoren in nur 9~Schichten.
 
-Eine Gütefunktion, die die beiden Ziele "`billig"' und "`schnell"'
+Eine Gütefunktion, die die beiden Ziele "`effizient"' und "`schnell"'
 berücksichtigen kann, hat die folgende allgemeine Form:
 \begin{equation}
   \operatorname{Guete}(S) = w_{\mathrm{Basis}}
@@ -1151,10 +1161,10 @@ jegliche Ergebnisse sind dann rein zufälliger Natur.\footnote{Dass dies nicht
 so schlecht ist wie man intuitiv vermuten könnte, zeigt der
 \textsc{SN-Markov}-Algorithmus in Abschnitt~\ref{sect:markov}.}
 
-Da möglichst billige und schnelle Sortiernetzwerke gefunden werden sollen, ist
-ein kleiner Wert von $\operatorname{Guete}(S)$ besser als ein großer Wert. Das
-heißt, dass das Ziel von \textsc{SN-Evolution} ist, $\operatorname{Guete}(S)$
-zu \emph{minimieren}.
+Da möglichst effiziente und schnelle Sortiernetzwerke gefunden werden sollen,
+ist ein kleiner Wert von $\operatorname{Guete}(S)$ besser als ein großer Wert.
+Das heißt, dass das Ziel von \textsc{SN-Evolution} ist,
+$\operatorname{Guete}(S)$ zu \emph{minimieren}.
 
 Mit dem Parameter $w_{\mathrm{Basis}}$ kann auf die Selektion Einfluss
 genommen werden. Ist er groß, wird der relative Unterschied der Güten