Bessere / genauere Einleitung zu SN-Evolution-Cut.
[diplomarbeit.git] / diplomarbeit.tex
index 3caa170..a79f9d6 100644 (file)
@@ -1795,16 +1795,14 @@ zusammenhängt.
 %\end{figure}
 
 \newpage
-\section{Der \textsc{SN-Evolution-Cut}-Algorithmus}
+\section[\textsc{SN-Evolution-Cut}]{Der \textsc{SN-Evolution-Cut}-Algorithmus}
 \label{sect:sn-evolution-cut}
 
 Das Programm \textsc{SN-Evolution-Cut} implementiert einen evolutionären
 Algorithmus, der zu einem gegebenen Sortiernetzwerk und einer gewünschten
 Leitungszahl ein Schnittmuster sucht, dass ein Sortiernetzwerk mit einer
 möglichst geringen Anzahl von Komparatoren und Schichten ergibt. Zur Bewertung
-von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}. Mit diesem
-Algorithmus wurden zu einer Reihe von „interessanten“ Netzwerken möglichst
-gute Schnittmuster gesucht.
+von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}.
 
 Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet \emph{Schnittmuster}, die
 in Abschnitt~\ref{sect:anzahl_schnittmuster} definiert wurden, als Individuen.
@@ -1822,6 +1820,17 @@ Die Mutation vertauscht entweder die Werte von zwei zufälligen Positionen oder
 multipliziert den Wert einer Leitung mit $-1$, um die Schnittrichtung zu
 invertieren.
 
+Die Eingabe für \textsc{SN-Evolution-Cut} ist ein $n$-Sortiernetzwerk und eine
+Zahl $k$, $1 \leqq k < n$, die angibt wie viele Leitungen entfernt werden
+sollen. Der Rückgabewert des \textsc{SN-Evolution-Cut}-Algorithmus ist ein
+\emph{$k$-Schnittmuster}. Wird das Schnittmuster auf das Sortiernetzwerk, mit
+dem der Algorithmus gestartet wurde, angewendet, entsteht ein möglichst
+schnelles und effizientes Sortiernetzwerk mit $m = n - k$ Leitungen. Da mit
+dem Eingabe-Netzwerk und dem zurückgegebenen $k$-Schnittmuster das
+$m$-Sortiernetzwerk eindeutig bestimmt ist, werden im Folgenden sowohl das
+$k$-Schnittmuster als auch das $m$-Sortiernetzwerk als Ausgabe von
+\textsc{SN-Evolution-Cut} bezeichnet.
+
 \subsection[Bitones Mergesort-Netzwerk]{Versuche mit dem bitonen Mergesort-Netzwerk}
 \label{sect:sn-evolution-cut:bs}
 
@@ -2165,6 +2174,110 @@ $\operatorname{OET}(n-k)$-Netzwerk.
 \subsection[Odd-Even-Mergesort-Netzwerk]{Versuche mit dem Odd-Even-Mergesort-Netzwerk}
 \label{sect:sn-evolution-cut:oes}
 
+Wird \textsc{SN-Evolution-Cut} mit dem \emph{Odd-Even-Mergesort}-Netzwerk
+\oes{n} gestartet, gibt der Algorithmus meist Sortiernetzwerke zurück, die
+genauso effizient und schnell wie das entsprechende
+\emph{Odd-Even-Mergesort}-Netzwerk \oes{m} sind. Die Effizienz der
+Sortiernetzwerke, die mit Schnittmustern von \textsc{SN-Evolution-Cut} aus
+\oes{n} entstehen können, zeigt Tabelle~\ref{tbl:ec-oes-efficiency}
+tabellarisch.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+\begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+\hline
+    &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+\hline
+  9 &  19 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 10 &  19 &  26 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 11 &  19 &  26 &  31 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 12 &  19 &  26 &  31 &  37 &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 13 &  19 &  26 &  31 &  37 &  41 &     &     &     &     &     &     &     &     &     &     &     \\
+ 14 &  19 &  26 &  31 &  37 &  41 &  48 &     &     &     &     &     &     &     &     &     &     \\
+ 15 &  19 &  26 &  31 &  37 &  41 &  48 &  53 &     &     &     &     &     &     &     &     &     \\
+ 16 &  19 &  26 &  31 &  37 &  41 &  48 &  53 &  59 &     &     &     &     &     &     &     &     \\
+ 17 &  19 &  26 &  31 &  38 &  41 &  48 &  53 &  59 &  63 &     &     &     &     &     &     &     \\
+ 18 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &     &     &     &     &     &     \\
+ 19 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &     &     &     &     &     \\
+ 20 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &     &     &     &     \\
+ 21 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 &     &     &     \\
+ 22 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 &     &     \\
+ 23 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 &     \\
+ 24 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 & 122 \\
+\hline
+\end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des
+    \emph{Odd-Even-Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$.
+    Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \oes{n} an, jede
+    Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
+    Ausgabenetzwerks.}
+  \label{tbl:ec-oes-efficiency}
+\end{table}
+
+\begin{figure}
+  \centering
+  \subfigure[11-Sortiernetzwerk aus 38~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \oes{17} erzeugt.]{\input{images/11-ec-from-oes17-fast.tex}\label{fig:11-ec-from-oes17-fast}}
+  \subfigure[12-Sortiernetzwerk aus 43~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \oes{18} erzeugt.]{\input{images/12-ec-from-oes18-fast.tex}\label{fig:12-ec-from-oes18-fast}}
+  \caption{Für einige Ziel-Leitungszahlen, unter anderem $m = 10$ und $m =
+  11$, kann der \textsc{SN-Evolution-Cut}-Algorithmus Sortiernetzwerke
+  erzeugen, die \emph{schneller} aber weniger \emph{effizient} als \oes{m}
+  sind.}
+  \label{fig:ec-oes-fast_networks}
+\end{figure}
+
+Die Bewertungsfunktion, die \textsc{SN-Evolution-Cut} verwendet, bevorzugt
+schnelle Sortiernetzwerke. Dadurch kann es vorkommen, dass ein
+$m$-Sortiernetzwerk, das durch ein von \textsc{SN-Evolution-Cut} ausgegebenes
+Schnittmuster entsteht, schneller als \oes{m} ist. Diese Geschwindigkeit
+war allerdings in allen beobachteten Fällen nur dann möglich, wenn
+zusätzliche Komparatoren in Kauf genommen wurden. In den
+Tabellen~\ref{tbl:ec-oes-efficiency} und~\ref{tbl:ec-oes-speed} ist dieser
+Fall für $m = 11$ und $k \geqq 6$, beziehungsweise $m = 12$ und $k \geqq 6$ zu
+beobachten. Die entsprechenden schnellen Sortiernetzwerke sind in
+Abbildung~\ref{fig:ec-oes-fast_networks} dargestellt.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+\begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+\hline
+    &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+\hline
+  9 &   6 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 10 &   6 &   8 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 11 &   6 &   8 &   9 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 12 &   6 &   8 &   9 &  10 &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 13 &   6 &   8 &   9 &  10 &  10 &     &     &     &     &     &     &     &     &     &     &     \\
+ 14 &   6 &   8 &   9 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     &     \\
+ 15 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     \\
+ 16 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     \\
+ 17 &   6 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     \\
+ 18 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &     &     &     &     &     &     \\
+ 19 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &     &     &     &     &     \\
+ 20 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &     &     &     &     \\
+ 21 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &     &     &     \\
+ 22 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &     &     \\
+ 23 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &     \\
+ 24 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &  15 \\
+\hline
+\oes{m}& 6 &  8 &   9 &  10 &  10 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &  15 \\
+\hline
+\end{tabular}
+  \end{center}
+  \caption{Anzahl der Schichten der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des
+    \emph{Odd-Even-Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$.
+    Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \oes{n} an, jede
+    Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
+    Ausgabenetzwerks.}
+  \label{tbl:ec-oes-speed}
+\end{table}
+
 In Abschnitt~\ref{sect:anzahl_schnittmuster} wurde bereits untersucht, wie
 viele \emph{unterschiedliche} Schnittmuster die konstruktiven Sortiernetzwerke
 $\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und $\operatorname{PS}(32)$
@@ -2353,7 +2466,7 @@ wie und warum es jede beliebige Eingabe sortiert.
     Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \ps{n} an, jede
     Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
     Ausgabenetzwerks.}
-  \label{tbl:ec-ps-fast}
+  \label{tbl:ec-ps-speed}
 \end{table}
 
 Das \emph{Pairwise-Sorting-Netzwerk} $\operatorname{PS}(n)$, das \textit{Ian