Schnittmuster: Kleine Verbesserungen.
[diplomarbeit.git] / diplomarbeit.tex
index 7c76502..efdb438 100644 (file)
 \tikzstyle{edge maximum} = [edge,color=red!20]
 \tikzstyle{vertex active minimum} = [vertex,color=blue!50, fill=blue!50]
 \tikzstyle{vertex active maximum} = [vertex,color=red!50, fill=red!50]
+\tikzstyle{vertex active minimum maximum} = [vertex,color=violet!50, fill=violet!50]
 \tikzstyle{vertex inactive minimum} = [vertex,color=blue!20, fill=blue!20]
 \tikzstyle{vertex inactive maximum} = [vertex,color=red!20, fill=red!20]
 \tikzstyle{vertex inactive minimum maximum} = [vertex,color=black!20, fill=black!20]
 \tikzstyle{comp active minimum} = [comp]
 \tikzstyle{comp active maximum} = [comp]
+\tikzstyle{comp active minimum maximum} = [comp,color=black!20]
 \tikzstyle{comp inactive minimum} = [comp,color=blue!20]
 \tikzstyle{comp inactive maximum} = [comp,color=red!20]
 \tikzstyle{comp inactive minimum maximum} = [comp,color=black!20]
@@ -84,8 +86,8 @@ das hinbekomme bzw. Recht behalte.}
 \newpage
 
 \tableofcontents
-\newpage
 
+\newpage
 \section{Motivation und Einleitung}
 
 \subsection{Motivation}\label{sect:motivation}
@@ -206,7 +208,7 @@ Rekombination}). Unter Umständen wird die neue Lösung noch zufällig
 verändert {\em (Mutation)}, bevor sie in die bestehende Lösungsmenge
 integriert wird. Die Wahrscheinlichkeiten, beispielsweise bei der {\em
 Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
-werden bessere Lösungen bevorzugt. Zur Bewertung die die sogenannte {\em
+werden bessere Lösungen bevorzugt. Zur Bewertung dient die sogenannte {\em
 Gütefunktion}.
 
 Nicht alle Probleme eignen sich für diese Strategie: Zum einen muss es möglich
@@ -216,13 +218,35 @@ es oft einfach ist {\em irgendeine} Lösung anzugeben. Zum anderen muss eine
 Methode für die Rekombination existieren. Das insbesondere dann problematisch
 wenn {\em Nebenbedingungen} eingehalten werden müssen.
 
+Beim Aussuchen von zufälligen Lösungen aus der Population, der
+\emph{Selektion}, werden gute Lösungen bevorzugt. Wie sehr diese Lösungen
+bevorzugt werden, hat einen starken Einfluss auf das Verhalten des
+Algorithmus. Werden gute Lösungen stark bevorzugt, konvergiert der Algorithmus
+schnell gegen ein (lokales) Optimum. Dieses \textit{Exploitation} (Englisch
+für „Ausnutzung“) genannte Verhalten sorgt dafür, dass sich der Algorithmus
+schnell auf eine Lösung festlegt und andere, möglicherweise bessere lokale
+Optima nicht mehr findet. Werden gute Lösungen hingegen nur wenig bevorzugt,
+erforscht der Algorithmus den Lösungsraum in viele Richtungen. Dieses
+\textit{Exploration} (Englisch für „Erforschung“) genannte Verhalten sorgt
+zwar dafür, dass der Algorithmus langsamer auf ein Optimum zusteuert, dafür
+findet er aber in der Regel bessere Lösungen.
+
+Die Parameter evolutionärer Algorithmen so einzustellen, dass sich ein guter
+Mittelweg zwischen den beiden Extremen einstellt, ist eine Aufgabe, die sich
+nur experimentell lösen lässt. Die genauen Parameter hängen nicht nur vom
+eigentlichen Algorithmus, sondern auch vom konkreten Problem ab, so dass sich
+beispielsweise bei der Optimierung von Sortiernetzwerken die Parameter
+zwischen verschiedenen Leitungszahlen stark unterscheiden.
+
 \begin{itemize}
 \item Unter einem "`Evolutionären Algorithmus"' versteht man $\ldots$
 \item Da die Sortiereigenschaft zu überprüfen NP-schwer ist, ist die
 Mutation \textit{(vermutlich)} nicht (effizient) möglich.
 \end{itemize}
 
+\newpage
 \section{Bekannte konstruktive Sortiernetzwerke}
+\label{sect:konstruktive_netzwerke}
 
 Übersicht über bekannte konstruktive Sortiernetzwerke.
 
@@ -266,7 +290,7 @@ Komparatoren, beispielsweise $\mathcal{O}(n (\log n)^2)$, die in weniger
 Schichten, zum Beispiel $\mathcal{O}(\log n)$, angeordnet sind.
 
 Das Interessante am OET-Netzwerk ist seine einfache Konstruktion. Einige der
-folgenden Algorithmen benötigen ein (einfaches) Sortiernetzwerk als
+folgenden Algorithmen benötigen ein möglichst einfaches Sortiernetzwerk als
 Starteingabe, auf dessen Basis sie versuchen optimierte Sortiernetzwerke zu
 finden. Häufig dient $\operatorname{OET}(n)$ als Eingabe für diese
 Algorithmen.
@@ -276,7 +300,7 @@ Algorithmen.
 Das \emph{bitone Mergesort}-Netzwerk ($\operatorname{BS}(n)$) ist ein
 Sortiernetzwerk, das 1968 von \emph{Kenneth~E. Batcher} in~\cite{B1968}
 veröffentlicht wurde. Es ist deutlich effizienter als das
-Odd-Even-Transporitionsort-Netzwerk -- sowohl in Bezug auf die Anzahl der
+Odd-Even-Transposi\-tionsort-Netzwerk -- sowohl in Bezug auf die Anzahl der
 Komparatoren als auch bezüglich der benötigten Zeit, also der Anzahl der
 Schichten.
 
@@ -286,8 +310,8 @@ sortierte Listen zusammenfügen (englisch: \textit{to~merge}) kann. Dieser
 verleiht dem Sortiernetzwerk seinen Namen.
 
 Da das Sortiernetzwerk rekursiv definiert ist, betrachten wir hier nur die
-Instanzen des Netzwerks, deren Leitungszahl eine Zweierpotenz ist,
-$\operatorname{BS}(n = 2^t)$.
+Instanzen des Netzwerks, deren Leitungszahl $n = 2^t$ eine Zweierpotenz ist.
+Es ist jedoch möglich das Sortiernetzwerk für beliebige~$n$ zu erzeugen.
 
 \subsubsection{Der bitone Mischer}\label{sect:der_bitone_mischer}
 
@@ -444,8 +468,7 @@ Elementen zu einer sortierten Ausgabefolge mit $N = n+m$~Elementen
 zusammenfügen kann. Dabei kommt es mit weniger Vergleichen aus als der
 \emph{bitone Mischer}, der im Abschnitt~\ref{sect:der_bitone_mischer}
 vorgestellt wurde. Allerdings benötigt der \emph{Odd-Even-Mischer} unter
-Umständen mehr Schichten als der \emph{bitone Mischer}.\footnote{Knuth,
-“Bitonic Sorting”, Seite~230}
+Umständen mehr Schichten als der \emph{bitone Mischer}.~\cite{KNUTH}
 
 Der \emph{Odd-Even-Mischer} selbst ist ebenfalls rekursiv aufgebaut: Die
 Eingabe für den Mischer mit $N = n + m$ Leitungen besteht aus den beiden
@@ -594,8 +617,8 @@ benötigt werden.
 
 \subsubsection{Das Odd-Even-Mergesort-Netzwerk}
 
-Das \emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(n)$ besteht, --~wie
-das \emph{bitonen Mergesort-Netzwerk}~-- rekursiv aus kleineren Varianten von
+Das \emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(n)$ besteht --~wie
+das \emph{bitone Mergesort-Netzwerk}~-- rekursiv aus kleineren Varianten von
 sich selbst und einem abschließenden \emph{Odd-Even-Mischer}. Die
 effizientesten Sortiernetzwerke in Bezuf auf Komparator- und Schichtzahl
 entstehen, wenn die Anzahl der Leitungen jeweils halbiert wird. Somit besteht
@@ -639,8 +662,8 @@ sie für $K(n,m)$ schwierig anzugeben ist. Es ist allerdings bekannt, dass
 $k(n)$ in $\mathcal{O}\left(n \left(\log (n)\right)^2\right)$ enthalten ist.
 
 Für den wichtigen Spezialfall, dass $n = 2^t$ eine Zweierpotenz ist, kann die
-Anzahl der Komparatoren wieder explizit angegeben werden. \textit{K.~Batcher}
-zeigt in seiner Arbeit\footnote{\todo{Referenz!}}, dass in diesem Fall
+Anzahl der Komparatoren wieder explizit angegeben werden. \textit{Kenneth
+Batcher} zeigt in~\cite{B1968}, dass in diesem Fall
 \begin{displaymath}
   k(n = 2^t) = \frac{1}{4} n \left(\log (n)\right)^2 - \frac{1}{4}n\log(n) + n - 1
 \end{displaymath}
@@ -655,6 +678,7 @@ gilt.
 %\item Pairwise sorting-network
 %\end{itemize}
 
+\newpage
 \section{Transformation von Sortiernetzwerken}
 
 \subsection{Komprimieren}
@@ -738,9 +762,10 @@ benötigen. Kombiniert man zwei dieser Netzwerke mit dem
 \emph{Odd-Even-Mischer} erhält man ein Sortiernetzwerk mit 18~Eingängen, das
 80~Komparatoren in 11~Schichten benötigt -- $\operatorname{OES}(18)$ benötigt
 82~Komparatoren in 13~Schichten. Damit ist das resultierende Netzwerk so
-schnell wie das Sortiernetzwerk mit 18~Eingängen, das \textit{Baddar} und
-\textit{Batcher} in ihrer Arbeit „An 11-Step Sorting Network for 18~Elements“
-vorstellen, benötigt aber 6~Komparatoren weniger.
+schnell wie das Sortiernetzwerk mit 18~Eingängen, das \textit{Sherenaz~W.
+Al-Haj Baddar} und \textit{Kenneth~E. Batcher} in ihrer Arbeit „An 11-Step
+Sorting Network for 18~Elements“~\cite{BB2009} vorstellen, benötigt aber
+6~Komparatoren weniger.
 
 % 9   9
 % 9  18
@@ -844,10 +869,12 @@ Ausgabe und kann entfernt werden.
 
 Der Eliminierungsschritt kann iterativ angewandt werden, um aus einem
 Sortiernetzwerk mit $n$~Ein\-gängen Sortiernetzwerke mit $n-1$, $n-2$,
-$n-3$,~\dots Eingängen zu erzeugen. Insbesondere können wir auf diese Art und
-Weise einen Sortiernetzwerk mit $2n$~Eingängen wieder auf ein Sortiernetzwerk
-mit $n$~Eingängen reduzieren. Das Anwenden mehrerer Minimum- und
-Maximum-Schnitte bezeichnen wir als \emph{Schnittmuster}.
+$n-3$,~\dots Eingängen zu erzeugen. Insbesondere können auf diese Art und
+Weise einen Sortiernetzwerke mit $2n$~Eingängen wieder auf Sortiernetzwerke
+mit $n$~Eingängen reduziert werden. $k$~Minimum- und Maximum-Schnitte, die
+nacheinander angewendet ein $n$-Sortiernetzwerk auf ein
+${(n-k)}$-Sortiernetz\-werk reduzieren, bezeichnen wir als
+\emph{$k$-Schnittmuster}.
 
 Zwei Schnittmuster heißen \emph{äquivalent} bezüglich~$S$, wenn ihre Anwendung
 auf das Sortiernetzwerk~$S$ das selbe Ergebnis liefert. Ansonsten heißen die
@@ -856,30 +883,30 @@ Schnittmuster \emph{unterschiedlich} bezüglich~$S$.
 Bei einem Sortiernetzwerk mit $n$~Eingängen gibt es $2n$~Möglichkeiten eine
 Leitung zu entfernen: Auf jeder der $n$~Leitungen kann sowohl das Minimum als
 auch das Maximum angenommen werden. Wendet man das Verfahren iterativ an, um
-ein $n$-Sortiernetzwerk auf ein $m$-Sortiernetzwerk zu reduzieren, ergeben
-sich insgesamt
-\begin{displaymath}
-  \prod_{i=n}^{m+1} 2i = 2^{n-m} \frac{n!}{m!}
+ein $n$-Sortiernetzwerk auf ein ${(n-k)}$-Sortiernetzwerk zu reduzieren,
+ergeben sich insgesamt
+\begin{equation}\label{eqn:anzahl_schnittmuster}
+  \prod_{i=n}^{1+n-k} 2i = 2^k \frac{n!}{(n-k)!}
   \quad (n > m)
-\end{displaymath}
+\end{equation}
 \emph{mögliche} Schnittmuster. Diese Schnittmuster sind nicht alle
 unterschiedlich. Legt man beispielsweise das Minimum auf die unterste Leitung
 und das Maximum auf die oberste Leitung eines Standard-Sortiernetzwerks,
 führen beide Reihenfolgen zum selben Ergebnis.
 
-\textit{Moritz Mühlenthaler} zeigt in seiner Arbeit (\todo{Referenz}), dass
-es möglich ist, mehrere Eingänge gleichzeitig mit Minimum beziehungsweise
-Maximum vorzubelegen. Dadurch wird die Anzahl der möglichen Schnittmuster
-reduziert, die Menge der so erzeugbaren Sortiernetzwerke bleibt aber
-unverändert. Die Anzahl der möglichen Schnittmuster setzt sich zusammen aus
-der Anzahl von Möglichkeiten, $n-m$~Leitungen aus $n$ Leitungen auszuwählen,
-und die möglichen Minimum-~/ Maximum-Muster. Damit ergibt sich folgende
-Formel für die Anzahl der Schnittmuster:
+\textit{Moritz Mühlenthaler} zeigt in seiner Arbeit (\todo{Referenz}), dass es
+möglich ist, mehrere Eingänge gleichzeitig mit Minimum beziehungsweise Maximum
+vorzubelegen. Dadurch wird die Anzahl der möglichen Schnittmuster reduziert,
+die Menge der so erzeugbaren Sortiernetzwerke bleibt aber unverändert. Die
+Anzahl der möglichen Schnittmuster setzt sich zusammen aus der Anzahl von
+Möglichkeiten, $k$~Leitungen aus $n$~Leitungen auszuwählen, und die möglichen
+Minimum-~/ Maximum-Muster. Damit ergibt sich folgende Formel für die Anzahl
+der möglichen Schnittmuster:
 \begin{displaymath}
-  2^{n-m} \cdot \left( \begin{array}{c} n \\ n-m \end{array} \right)
-  = 2^{n-m} \cdot \frac{n!}{(n-m)! m!}
-  = 2^{n-m} \cdot \frac{n!}{m!} \cdot \frac{1}{(n-m)!}
-  \quad (n > m)
+  2^k \cdot \left( \begin{array}{c} n \\ k \end{array} \right)
+  = 2^{k} \cdot \frac{n!}{k! (n-k)!}
+  = 2^{k} \cdot \frac{n!}{(n-k)!} \cdot \frac{1}{k!}
+  \quad (1 \leqq k < n)
 \end{displaymath}
 
 Die Anzahl der möglichen Schnittmuster wird mit der Anzahl der zu entfernenden
@@ -906,144 +933,118 @@ Unterschied nicht mehr erkennen. In allen sechs Fällen, in denen sich die
 Eingänge unterscheiden, wird anschließend der Komparator entfernt, so dass
 sich die Resultate auch in der ersten Schicht nicht unterscheiden.
 
-\subsubsection{Der \textsc{SN-Evolution-Cut}-Algorithmus}
-\label{sect:sn-evolution-cut}
-
-Das Programm \textsc{SN-Evolution-Cut} implementiert einen evolutionären
-Algorithmus, der zu einem gegebenen Sortiernetzwerk und einer gewünschten
-Leitungszahl ein Schnittmuster sucht, dass ein Sortiernetzwerk mit einer
-möglichst geringen Anzahl von Komparatoren und Schichten ergibt. Zur Bewertung
-von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}. Mit diesem
-Algorithmus wurden zu einer Reihe von „interessanten“ Netzwerken möglichst
-gute Schnittmuster gesucht.
-
-Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet die \emph{Schnittmuster}
-als Individuen. Um zwei Individuen zu rekombinieren werden die ersten
-$r$~Schnitte des einen Schnittmusters verwendet und die letzten
-${c-r}$~Schnitte des zweiten Schmittmusters. $r$ ist eine Zufallsvariable mit
-$0 \leqq r \leqq c$.
-
-Die Mutation setzt entweder die Leitungs-Nummer eines Schnitts~$i$ zufällig
-auf einen neuen Wert $l$ mit $0 \leqq l \le n-i$ oder invertiert die
-Schnitt-Richtung.
-
-% bitones Mergesort-Netzwerk
-
-In \cite{MW2010} zeigen \textit{Moritz Mühlenthaler} und \textit{Rolf Wanka},
-wie man einen bitonen Mischer, der nach Batchers Methode konstruiert wurde,
-durch systematisches Entfernen von Leitungen in einen ebenfalls bitonen
-Mischer mit der Hälfte der Leitungen transformiert. Diese alternativen Mischer
-sparen im Vergleich zu den Mischern, die nach Batchers Methode konstruiert
-werden, Komparatoren ein.
-
-Beispeilsweise geben \textit{Mühlenthaler} und \textit{Wanka} ein
-Sortiernetzwerk mit 16~Eingängen an, das mithilfe der alternativen Mischer
-konstruiert wurde. Dieses Sortiernetzwerk benötigt 68~Komparatoren, 12~weniger
-als das bitone Mergesort-Netzwerk nach Batchers Methode. Gegenüber Batchers
-Methode sparen so konstruierte Sortiernetzwerke ${\frac{1}{4}n(\log n - 1)}$
-Komparatoren ein.
-
 \begin{figure}
   \begin{center}
-    \input{images/16-ec-1277186619.tex}
+    \includegraphics[viewport=0 0 360 216,width=15cm]{images/count-cuts-16.pdf}
   \end{center}
-  \caption{{\tt images/16-ec-1277186619.tex}: Sortiernetzwerk mit 16~Leitungen
-    und 68~Komparatoren in 10~Schichten. Das Netzwerk wurde von dem
-    Algorithmus \textsc{SN-Evolution-Cut} aus dem bitonen Mergesort-Netzwerk
-    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
-  \label{fig:16-ec-1277186619}
+  \caption{Anzahl der \emph{unterschiedlichen} Sortiernetzwerke, die durch
+  8-Schnittmuster aus $\operatorname{OES}(16)$, $\operatorname{BS}(16)$ und
+  $\operatorname{PS}(16)$ hervorgegangen sind. Die Anzahl der
+  unterschiedlichen Netzwerke nach $10^6$~Iterationen ist 3519 für das
+  \emph{Odd-Even-Mergesort-Netzwerk}, 4973 für das \emph{bitone
+  Mergesort-Netzwerk} und 18764 für das \emph{Pairwise-Sorting-Netzwerk}.}
+  \label{fig:count-cuts-16}
 \end{figure}
 
-Startet man {\sc SN-Evolution-Cut} mit dem bitonen Mergesort-Netzwerk
-$\operatorname{BS}(32)$ und der Vorgabe 16~Leitungen zu entfernen, liefert der
-Algorithmus Sortiernetzwerke, die ebenfalls aus 68~Komparatoren bestehen. Ein
-16-Sortiernetzwerk, das auf diese Weise generiert wurde, ist in
-Abbildung~\ref{fig:16-ec-1277186619} zu sehen.
-
-% Odd-Even-Transpositionsort-Netzwerk
-
-Betrachtet man das Sortiernetzwerk in Abbildung~\ref{fig:16-ec-1277186619}, so
-ist keine Ähnlichkeit zu $\operatorname{BS}(32)$ oder $\operatorname{BS}(16)$
-erkennbar -- insbesondere die ersten Schichten des Netzwerks scheinen rein
-zufällig zu sein. Dies ist jedoch kein Eigenschaft des Algorithmus, sondern
-hängt insbesondere von der Eingabe ab. Wird \textsc{SN-Evolution-Cut}
-beispielsweise mit dem \emph{Odd-Even-Transpositionsort-Netzwerk}
-$\operatorname{OET}(n)$ und $m$~Schnitten gestartet, so ist das beste Ergebnis
-immer das $\operatorname{OET}(n-m)$-Netzwerk. 
+Alleine durch Betrachten der ersten Schicht von Komparatoren konnte die Anzahl
+der \emph{unterschiedlichen} Schnittmuster auf höchstens $\frac{2}{3}$ der
+\emph{möglichen} Schnittmuster reduziert werden. Um die Anzahl der
+\emph{unterschiedlichen} Schnittmuster experimentell zu ermitteln, wurden je
+eine Million zufällige 8-Schnittmuster auf die 16-Sortiernetzwerke
+$\operatorname{OES}(16)$, $\operatorname{BS}(16)$ und $\operatorname{PS}(16)$
+angewandt. Anschließend wurde mithilfe einer Hashtabelle überprüft, ob das
+resultierende Sortiernetzwerk schon von einem \emph{äquivalenten}
+Schnittmuster erzeugt wurde. Falls das Sortiernetzwerk noch nicht in der
+Hashtabelle enthalten war, wurde der Zähler für unterschiedliche Schnittmuster
+erhöht und das Sortiernetzwerk eingefügt.
+
+Abbildung~\ref{fig:count-cuts-16} trägt die Anzahl der
+\emph{unterschiedlichen} Schnittmuster gegen die Anzahl der zufälligen
+Schnittmuster auf. Klar zu sehen ist, dass sich die Anzahl der erzeugten
+Sortiernetzwerke nach $500.000$~Iterationen nur noch gering verändert und der
+Wert nach $1.000.000$~Iterationen allem Anschein nach dem Endwert schon sehr
+nahe ist.
+
+Die Anzahl der möglichen 8-Schnittmuster ist entsprechend der
+Formel~\ref{eqn:anzahl_schnittmuster} 3.294.720. Diese möglichen Schnittmuster
+führen aber nur zu wenigen \emph{unterschiedlichen} Sortiernetzwerken: 3519
+($\approx 0,1\%$) im Fall des \emph{Odd-Even-Mergesort-Netzwerks}, 4973
+($\approx 0,15\%$) beim \emph{bitonen Mergesort-Netzwerk} und 18764 ($\approx
+0,57\%$) beim \emph{Pairwise-Sorting-Netzwerk}. Zwar ist es möglich, dass mehr
+Iterationen die Anzahl der unterschiedlichen Schnittmuster noch wachsen lässt.
+Die Graphen in Abbildung~\ref{fig:count-cuts-16} geben jedoch Grund zu der
+Annahme, dass die Anzahl dieser zusätzlichen, unterschiedlichen Schnittmuster
+vernachlässigbar klein ist.
+
+Bedingt durch die sehr große Anzahl möglicher Schnittmuster ist dieses
+Experiment für größere Sortiernetzwerke leider nicht sinnvoll durchführbar.
+Die Hashtabelle benötigt mehr Arbeitsspeicher als in derzeitigen Rechnern
+vorhanden ist, bevor ein entsprechender Graph den linearen Bereich für
+„kleine“ x-Werte verlässt.
+
+Um die Anzahl der unterschiedlichen Schnittmuster trotzdem abschätzen zu
+können, kann man sich einer stochastischen Methode bedienen, der sogenannten
+\emph{Monte-Carlo-Methode}. Zunächst generiert man eine Menge~$S$ von
+$k$~unterschiedlichen Schnittmustern. Anschließend werden $n$~Schnittmuster
+zufällig erzeugt und überprüft, ob sie sich in der Menge~$S$ enthalten sind.
+Unter der Annahme, dass das Verhältnis der zufälligen Schnittmuster, die in
+$S$ enthalten sind, und $n$ dem Verhältnis von $k$ und der Anzahl der
+unterschiedlichen Schnittmuster ingesamt entspricht, kann man die Anzahl der
+unterschiedlichen Schnittmuster abschätzen.
 
 \begin{figure}
   \begin{center}
-    \input{images/16-ec-from-ps32.tex}
+    \includegraphics[viewport=0 0 425 262,width=15cm]{images/collisions-10000-1000000-32.pdf}
   \end{center}
-  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
-    10~Schichten. Das Netzwerk wurde von dem Algorithmus
-    \textsc{SN-Evolution-Cut} aus dem \emph{Pairwise-Sorting-Netzwerk}
-    $\operatorname{PS}(32)$ durch 16~Schnitte erzeugt.}
-  \label{fig:16-ec-from-ps32}
+  \caption{Abschnätzung der unterschiedlichen Schnittmuster mit der
+  \emph{Monte-Carlo-Methode} für $\operatorname{OES}(32)$ und
+  $\operatorname{BS}(32)$.}
+  \label{fig:collisions-10000-1000000-32}
 \end{figure}
 
-% Pairwise-Sorting-Netzwerk
-
-Anders verhält sich das \emph{Pairwise-Sorting-Netzwerk}
-$\operatorname{PS}(n)$, das \textit{Ian Parberry} in seiner Arbeit „The
-Pairwise Sorting Network“ \cite{P1992} definiert. Startet man
-\textsc{SN-Evolution-Cut} mit $\operatorname{PS}(32)$ und der Vorgabe,
-16~Leitungen zu entfernen, erhält man ein Sortiernetzwerk, dass die gleiche
-Anzahl an Komparatoren und Schichten hat wie $\operatorname{PS}(16)$ und
-$\operatorname{OES}(16)$. Eines dieser Sortiernetzwerke ist in
-Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
-
-Obwohl das \emph{Pairwise-Sorting-Netzwerk} den \emph{Odd-Even-Mischer} nicht
-einsetzt und auch nicht auf einem Mischer basiert, ist der
-$\operatorname{OEM}(8,8)$ im Sortiernetzwerk in
-Abbildung~\ref{fig:16-ec-from-ps32} eindeutig erkennbar (Schichten~7--10). In
-den Schichten~1--6 erkennt man zwei unabhängige Sortiernetzerke, die
-strukturell identisch zu $\operatorname{PS}(8)$ sind -- die Schichten~1 und~2
-sowie 4~und~5 sind vertauscht, was jeweils zum selben Ergebnis nach dem
-Schichtenpaar führt.
-
-\begin{displaymath}
-\textit{Eingang}_i = \left\{ \begin{array}{rl}
-  -\infty & \quad \textrm{falls } i \operatorname{mod} 8 \in \{0, 6\} \\
-   \infty & \quad \textrm{falls } i \operatorname{mod} 8 \in \{2, 4\} \\
-        ? & \quad \mathrm{sonst}
-  \end{array} \right.
-\end{displaymath}
-
-\begin{figure}
-  \begin{center}
-    \input{images/32-pairwise-cut-16-pairwise.tex}
-  \end{center}
-  \caption{PS(32) mit 16 Schnitten zu PS(16).}
-  \label{fig:ps16-from-ps32}
-\end{figure}
+In Abbildung~\ref{fig:collisions-10000-1000000-32} ist das Ergebnis des
+Monte-Carlo-Algorithmus für 16-Schnittmuster zu sehen, die auf
+$\operatorname{OES}(32)$ und $\operatorname{BS}(32)$ angewandt wurden: Von
+jedem Sortiernetzwerk wurden zunächst eine Menge~$S$ von 10.000
+\emph{unterschiedlichen} Schnittmustern erzeugt. Anschließend wurden 1.000.000
+zufällige Schnittmuster erzeugt und der Anteil der zufälligen Schnittmuster,
+die \emph{äquivalent} zu einem in~$S$ enthalten Schnittmuster sind, berechnet.
+Für $\operatorname{OES}(32)$ war dieser Anteil etwa $0,19 \%$, für
+$\operatorname{BS}(32)$ etwa $0,29 \%$. Das ergibt eine Abschätzung von $5,2
+\cdot 10^6$ unterschiedlichen Schnittmustern für $\operatorname{OES}(32)$ und
+$3,4 \cdot 10^6$ für $\operatorname{BS}(32)$.
 
 \begin{figure}
   \begin{center}
-    \input{images/16-pairwise.tex}
+    \includegraphics[viewport=0 0 425 262,width=15cm]{images/collisions-100000-1000000-32-ps.pdf}
   \end{center}
-  \caption{Das $\operatorname{PS}(16)$-Sortiernetzwerk mit 8~Schnitten
-  ($\operatorname{MIN}(0,2,4,6), \operatorname{MAX}(9,11,13,15)$). Das
-  resultierende 8-Sortiernetzwerk ist $\operatorname{OES}(8)$.}
-  \label{fig:16-pairwise}
+  \caption{Abschnätzung der unterschiedlichen Schnittmuster mit der
+  \emph{Monte-Carlo-Methode} für $\operatorname{PS}(32)$. 385 von 1.000.000
+  zufälligen Schnittmustern waren äquivalent zu einem Schnittmuster in einer
+  Menge von 100.000. Daraus ergibt sich eine Schätzung von $2,6 \cdot 10^8$
+  unterschiedlichen Schnittmustern.}
+  \label{fig:collisions-100000-1000000-32-ps}
 \end{figure}
 
-Wendet man \textsc{SN-Evolution-Cut} auf $\operatorname{PS}(16)$ an, so kann
-man $\operatorname{OES}(8)$ erhalten.
-
-% Odd-Even-Mergesort-Netzwerk
-
-\todo{Schreibe noch etwas zum Odd-Even-Mergesort-Netzwerk.}
-
-\begin{itemize}
-  \item Beispiel: Moritz und Rolfs Optimierung für Bitonic-Sort.
-  \item Wie gut kann man durch wegschneiden werden?
-  \item Wieviele Schnitte ergeben das selbe Netzwerk? Oder andersrum: Wieviele
-  unterschiedliche Netzwerke kann ich erhalten? Wieviele Nachfolger hat ein
-  Netzwerk / Knoten in der Markov-Kette?
-  \item Abschnitt „Optimierung der Schnitte“ hier einbauen.
-\end{itemize}
+Im vorherigen Abschnitt wurde das \emph{Pairwise-Sorting-Netzwerk}
+$\operatorname{PS}(32)$ nicht betrachtet, da es für dieses Netzwerk viel mehr
+unterschiedliche 16-Schnittmuster gibt als für $\operatorname{OES}(32)$ und
+$\operatorname{BS}(32)$. In Anbetracht der Tatsache, dass die Anzahl der
+unterschiedlichen 8-Schnittmuster für $\operatorname{PS}(16)$ in
+Abbildung~\ref{fig:count-cuts-16} bereits mehr als dreimal größer war als die
+Anzahl für $\operatorname{OES}(16)$ beziehungsweise $\operatorname{BS}(16)$,
+ist dieser Umstand wenig verwunderlich. In einem kombinierten Graphen hätte
+man keine Details mehr erkennen können. Aufgrund der hohen Anzahl
+unterschiedlicher Schnittmuster, wurde für das gleiche Experiment mit
+$\operatorname{PS}(32)$ eine initiale Menge von 100.000 unterschiedilchen
+Schnittmustern erzeugt. Trotzdem wurden nach 1.000.000 Iterationen nur 385
+Schnittmuster gefunden, die zu einem Schnittmuster in der Menge äquivalent
+sind. Daraus ergibt sich eine Abschätzung von $2,6 \cdot 10^8$
+unterschiedlichen Schnittmustern -- zwei Zehnerpotenzen mehr als bei den
+vorherigen Sortiernetzwerken, aber immernoch fünf Zehnerpotenzen kleiner als
+die Anzahl der \emph{möglichen} Schnittmuster.
 
+\newpage
 \section{Der \textsc{SN-Evolution}-Algorithmus}
 
 Um einen evolutionären Algorithmus für Sortiernetzwerke zu entwickeln, werden
@@ -1176,8 +1177,213 @@ acht Eingängen. Es besteht aus 19~Komparatoren in 6~Schichten.}
 \begin{itemize}
 \item So gut kann man mindestens werden {\em ($\rightarrow$ Bitonic-Mergesort, vermute ich)}.
 \item Wie gut die Netzwerke werden, hängt stark vom verwendeten \em{Mischer} ab.
+\item Ggf. Abschnitt „Shmoo-Äquivalenz“ kürzen und hier einbauen.
+\end{itemize}
+
+%\input{shmoo-aequivalenz.tex}
+
+\newpage
+\section{Der \textsc{SN-Evolution-Cut}-Algorithmus}
+\label{sect:sn-evolution-cut}
+
+Das Programm \textsc{SN-Evolution-Cut} implementiert einen evolutionären
+Algorithmus, der zu einem gegebenen Sortiernetzwerk und einer gewünschten
+Leitungszahl ein Schnittmuster sucht, dass ein Sortiernetzwerk mit einer
+möglichst geringen Anzahl von Komparatoren und Schichten ergibt. Zur Bewertung
+von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}. Mit diesem
+Algorithmus wurden zu einer Reihe von „interessanten“ Netzwerken möglichst
+gute Schnittmuster gesucht.
+
+Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet die \emph{Schnittmuster}
+als Individuen. Um zwei Individuen zu rekombinieren werden die ersten
+$r$~Schnitte des einen Schnittmusters verwendet und die letzten
+${c-r}$~Schnitte des zweiten Schmittmusters. $r$ ist eine Zufallsvariable mit
+$0 \leqq r \leqq c$.
+
+Die Mutation setzt entweder die Leitungs-Nummer eines Schnitts~$i$ zufällig
+auf einen neuen Wert $l$ mit $0 \leqq l \le n-i$ oder invertiert die
+Schnitt-Richtung.
+
+\subsection{Versuche mit dem bitonen Mergesort-Netzwerk}
+
+In \cite{MW2010} zeigen \textit{Moritz Mühlenthaler} und \textit{Rolf Wanka},
+wie man einen bitonen Mischer, der nach Batchers Methode konstruiert wurde,
+durch systematisches Entfernen von Leitungen in einen ebenfalls bitonen
+Mischer mit der Hälfte der Leitungen transformiert. Diese alternativen Mischer
+sparen im Vergleich zu den Mischern, die nach Batchers Methode konstruiert
+werden, Komparatoren ein.
+
+Beispeilsweise geben \textit{Mühlenthaler} und \textit{Wanka} ein
+Sortiernetzwerk mit 16~Eingängen an, das mithilfe der alternativen Mischer
+konstruiert wurde. Dieses Sortiernetzwerk benötigt 68~Komparatoren, 12~weniger
+als das bitone Mergesort-Netzwerk nach Batchers Methode. Gegenüber Batchers
+Methode sparen so konstruierte Sortiernetzwerke ${\frac{1}{4}n(\log n - 1)}$
+Komparatoren ein.
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-ec-from-bs32.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 68~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution-Cut} aus dem \emph{bitonen Mergesort-Netzwerk}
+    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
+  \label{fig:16-ec-from-bs32}
+\end{figure}
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-ec-from-bs32-normalized.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 68~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution-Cut} aus dem bitonen Mergesort-Netzwerk
+    $\operatorname{BS}(32)$ durch 16~Schnitte erzeugt.}
+  \label{fig:16-ec-from-bs32-normalized}
+\end{figure}
+
+Startet man {\sc SN-Evolution-Cut} mit dem bitonen Mergesort-Netzwerk
+$\operatorname{BS}(32)$ und der Vorgabe 16~Leitungen zu entfernen, liefert der
+Algorithmus Sortiernetzwerke, die ebenfalls aus 68~Komparatoren bestehen. Ein
+16-Sortiernetzwerk, das auf diese Weise generiert wurde, ist in den
+Abbildungen~\ref{fig:16-ec-from-bs32} und~\ref{fig:16-ec-from-bs32-normalized}
+zu sehen. Abbildung~\ref{fig:16-ec-from-bs32} zeigt $\operatorname{BS}(32)$
+und das
+${\operatorname{MIN}(0,5,9,11,15,17,20,22,26,29,30)}$-${\operatorname{MAX}(2,4,13,19,24)}$-Schnittmuster,
+das durch \textsc{SN-Evolution-Cut} gefunden wurde.
+Abbildung~\ref{fig:16-ec-from-bs32-normalized} zeigt das 16-Sortiernetzwerk
+nachdem das Schnittmuster angewandt und das Netzwerk normalisiert wurde. Eine
+Ähnlichkeit zu $\operatorname{BS}(32)$ oder $\operatorname{BS}(16)$ ist in
+diesem Netzwerk nicht mehr erkennbar -- insbesondere die ersten Schichten des
+Netzwerks scheinen rein zufällig zu sein.
+
+\begin{figure}
+  % 0:MAX 1:MAX 4:MIN 6:MAX 9:MAX 11:MAX 14:MIN 15:MAX 18:MAX 19:MAX 21:MAX
+  % 23:MIN 24:MAX 25:MAX 30:MIN 31:MIN 32:MAX 34:MAX 36:MIN 37:MAX 40:MAX
+  % 43:MAX 46:MIN 47:MAX 48:MAX 49:MAX 54:MIN 55:MAX 56:MAX 58:MIN 60:MAX
+  % 63:MAX
+  \begin{center}
+    \input{images/32-ec-from-bs64.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 32~Leitungen und 206~Komparatoren in
+    15~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution-Cut} aus dem bitonen Mergesort-Netzwerk
+    $\operatorname{BS}(64)$ durch 32~Schnitte erzeugt. Das zugehörige
+    Schnittmuster ist
+    $\operatorname{MIN}(4, 14, 23, 30, 31, 36, 46, 54, 58)$,
+    $\operatorname{MAX}(0, 1, 6, 9, 11, 15, 18, 19, 21, 24, 25, 32, 34, 37,
+    40, 43, 47, 48, 49, 55, 56, 60, 63)$.}
+  \label{fig:32-ec-from-bs64}
+\end{figure}
+
+Das Ergebnis von \textit{Mühlenthaler} von \textit{Wanka}, die den bitonen
+Mischer optimiert und anschließend aus diesen Mischern ein Sortiernetzwerk
+konstruiert haben, kann demnach auch erreicht werden, wenn
+$\operatorname{BS}(32)$ auf ein 16-Sortiernetzwerk reduziert wird. Bei anderen
+Größen, beispielsweise wenn man $\operatorname{BS}(64)$ auf ein
+32-Sortiernetzwerk reduziert, kann das Ergebnis sogar noch übertroffen werden,
+wie in Abbildung~\ref{fig:32-ec-from-bs64} zu sehen: Ein nach Batchers Methode
+konstruiertes Sortiernetzwerk benötigt 240~Komparatoren, ein aus den
+optimierten Mischern aufgebautes Netzwerk verbessert die Kosten auf
+208~Komparatoren. Das in Abbildung~\ref{fig:32-ec-from-bs64} dargestellte
+Sortiernetzwerk benötigt lediglich 206~Komparatoren. Die Komparatoren aller
+dieser Netzwerke können in 15~Schichten angeordnet werden, so dass die
+Verzögerung dieser Sortiernetzwerke gleich ist.
+
+Leider sind die Schnittmuster, die \textsc{SN-Evolution-Cut} ausgibt, sehr
+unregelmäßig. Bisher ist es nicht gelungen eine Konstruktionsanweisung für
+gute Schnittmuster anzugeben.
+
+Entscheidend für das Ergebnis eines Schnittmusters scheint beim bitonen
+Mergesort-Netzwerk die Aufteilung der Minimum- und Maximumschnitte zu sein.
+Von Hundert 16-Schnittmustern für $\operatorname{BS}(32)$, die in
+Sortiernetzwerken mit 68~Komparatoren in 10~Schichten resultieren, hatten 73
+ein Verhältnis von $5/11$, 13 hatten ein Verhältnis von $4/12$ und 14 hatten
+ein Verhältnis von $3/13$ Minimum- beziehungsweise Maximumschnitten. Da sich
+die Schnittmuster aufgrund der Symmetrie des bitonen Mergesort-Netzwerks
+leicht invertieren lassen, werden der Fall, dass es mehr Minimumschnitte, und
+der Fall, dass es mehr Maximumschnitte gibt, nicht unterschieden.
+
+Dass die Ergebnisse von \textsc{SN-Evolution-Cut} keine erkennbare Struktur
+haben, ist jedoch kein Eigenschaft des Algorithmus, sondern hängt insbesondere
+von der Eingabe ab. Wird \textsc{SN-Evolution-Cut} beispielsweise mit dem
+\emph{Odd-Even-Transpositionsort-Netzwerk} $\operatorname{OET}(n)$ und
+$m$~Schnitten gestartet, so ist das beste Ergebnis immer das
+$\operatorname{OET}(n-m)$-Netzwerk. 
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-ec-from-ps32.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution-Cut} aus dem \emph{Pairwise-Sorting-Netzwerk}
+    $\operatorname{PS}(32)$ durch 16~Schnitte erzeugt.}
+  \label{fig:16-ec-from-ps32}
+\end{figure}
+
+\subsection{Versuche mit dem Pairwise-Sorting-Netzwerk}
+
+Anders verhält sich das \emph{Pairwise-Sorting-Netzwerk}
+$\operatorname{PS}(n)$, das \textit{Ian Parberry} in seiner Arbeit „The
+Pairwise Sorting Network“ \cite{P1992} definiert. Startet man
+\textsc{SN-Evolution-Cut} mit $\operatorname{PS}(32)$ und der Vorgabe,
+16~Leitungen zu entfernen, erhält man ein Sortiernetzwerk, dass die gleiche
+Anzahl an Komparatoren und Schichten hat wie $\operatorname{PS}(16)$ und
+$\operatorname{OES}(16)$. Eines dieser Sortiernetzwerke ist in
+Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
+
+Obwohl das \emph{Pairwise-Sorting-Netzwerk} den \emph{Odd-Even-Mischer} nicht
+einsetzt und auch nicht auf einem Mischer basiert, ist der
+$\operatorname{OEM}(8,8)$ im Sortiernetzwerk in
+Abbildung~\ref{fig:16-ec-from-ps32} eindeutig erkennbar (Schichten~7--10). In
+den Schichten~1--6 erkennt man zwei unabhängige Sortiernetzerke, die
+strukturell identisch zu $\operatorname{PS}(8)$ sind -- lediglich die
+Schichten~1 und~2 sowie 4~und~5 sind vertauscht.
+
+\begin{displaymath}
+\textit{Eingang}_i = \left\{ \begin{array}{rl}
+  -\infty & \quad \textrm{falls } i \operatorname{mod} 8 \in \{0, 6\} \\
+   \infty & \quad \textrm{falls } i \operatorname{mod} 8 \in \{2, 4\} \\
+        ? & \quad \mathrm{sonst}
+  \end{array} \right.
+\end{displaymath}
+
+\begin{figure}
+  \begin{center}
+    \input{images/32-pairwise-cut-16-pairwise.tex}
+  \end{center}
+  \caption{PS(32) mit 16 Schnitten zu PS(16).}
+  \label{fig:ps16-from-ps32}
+\end{figure}
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-pairwise.tex}
+  \end{center}
+  \caption{Das $\operatorname{PS}(16)$-Sortiernetzwerk mit 8~Schnitten
+  ($\operatorname{MIN}(0,2,4,6), \operatorname{MAX}(9,11,13,15)$). Das
+  resultierende 8-Sortiernetzwerk ist $\operatorname{OES}(8)$.}
+  \label{fig:16-pairwise}
+\end{figure}
+
+Wendet man \textsc{SN-Evolution-Cut} auf $\operatorname{PS}(16)$ an, so kann
+man $\operatorname{OES}(8)$ erhalten.
+
+\subsection{Versuche mit dem Odd-Even-Mergesort-Netzwerk}
+
+\todo{Schreibe noch etwas zum Odd-Even-Mergesort-Netzwerk.}
+
+\begin{itemize}
+  \item Beispiel: Moritz und Rolfs Optimierung für Bitonic-Sort.
+  \item Wie gut kann man durch wegschneiden werden?
+  \item Wieviele Schnitte ergeben das selbe Netzwerk? Oder andersrum: Wieviele
+  unterschiedliche Netzwerke kann ich erhalten? Wieviele Nachfolger hat ein
+  Netzwerk / Knoten in der Markov-Kette?
+  \item Abschnitt „Optimierung der Schnitte“ hier einbauen.
 \end{itemize}
 
+\newpage
 \section{Der \textsc{SN-Markov}-Algorithmus}
 
 Der evolutionäre \textsc{SN-Evolution}-Algorithmus aus dem vorherigen
@@ -1194,14 +1400,14 @@ $S_0$ mit sich selbst und anschließendem Eliminieren der Hälfte der Leitungen
 hervorgehen können, heißen \emph{Nachfolger} von $S_0$.
 
 Beim beschriebenen Vorgehen kann man die Sortiernetzwerke als Knoten in einem
-gerichteten Graphen betrachten. Zwei Knoten $V_0$ und $V_1$, die zwei
+(gerichteten) Graphen betrachten. Zwei Knoten $V_0$ und $V_1$, die zwei
 Sortiernetzwerke $S_0$ und $S_1$ repräsentieren, sind genau dann mit einer
-Kante ${E_{0,1} = (V_0, V_1)}$ verbunden, wenn $S_1$ ein \emph{Nachfolger} von $S_0$
-ist, das heißt dass man $S_1$ durch die Rekombination von $S_0$ mit sich
+Kante ${E_{0,1} = (V_0, V_1)}$ verbunden, wenn $S_1$ ein \emph{Nachfolger} von
+$S_0$ ist, das heißt dass man $S_1$ durch die Rekombination von $S_0$ mit sich
 selbst erzeugen kann.
 
 Wie in Abschnitt~\ref{sect:anzahl_schnittmuster} beschrieben ist die Anzahl
-(unterschiedlichen) Schnittmuster und damit die Anzahl der Nachfolger sehr
+(unterschiedlicher) Schnittmuster und damit die Anzahl der Nachfolger sehr
 groß. Wenn $S_0$ ein Sortiernetzwerk mit $n$~Leitungen ist, so hat $S_0$ bis
 zu
 \begin{displaymath}
@@ -1209,11 +1415,11 @@ zu
 \end{displaymath}
 Nachfolger.
 
-Der Algorithmus {\sc SN-Markov} legt auf diesem Graph einen zufälligen Weg
-(englisch: \textit{random walk}) zurück. Er startet auf einem gegebenen
-Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu gelangen
-rekombiniert er das aktuelle Sortiernetzwerk mit sich selbst und erhält so
-einen zufälligen Nachfolger.
+Der Algorithmus {\sc SN-Markov} legt auf diesem Nachfolger-Graph einen
+zufälligen Weg (englisch: \textit{random walk}) zurück. Er startet auf einem
+gegebenen Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu
+gelangen, rekombiniert der Algorithmus das aktuelle Sortiernetzwerk mit sich
+selbst und erhält so einen zufälligen Nachfolger.
 
 \begin{itemize}
   \item $n \leftarrow \mathrm{Input}$
@@ -1232,108 +1438,35 @@ einen zufälligen Nachfolger.
 
 \begin{figure}
   \begin{center}
-  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-16.pdf}
+  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-12-pct.pdf}
   \end{center}
-  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 16~Leitungen), die von {\sc SN-Markov} durchlaufen wurden.}
-  \label{fig:markov-comparators-16}
+  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 12~Leitungen),
+  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+  \emph{Gamma-Verteilung} $f(x - 40)$ mit $k = 8,267$ und $\theta = 0,962$.}
+  \label{fig:markov-comparators-12}
 \end{figure}
 
-%\input{shmoo-aequivalenz.tex}
-
-\section{Optimierung der Schnitte}
-
-\todo{In den Abschnitt "`Leitungen entfernen"' einbauen.}
-
 \begin{figure}
-\begin{center}
-\input{images/32-ec-1277190372.tex}
-\end{center}
-\caption{{\tt images/32-ec-1277190372.tex}: Sortiernetzwerk mit 32~Leitungen
-  und 206~Komparatoren in 15~Schichten. Das Netzwerk wurde von dem Algorithmus
-  \textsc{SN-Evolution-Cut} aus dem Bitonic-Mergesort-Netzwerk $BS(64)$ durch
-  32~Schnitte erzeugt.}
-\label{fig:32-ec-1277190372}
+  \begin{center}
+  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-14-pct.pdf}
+  \end{center}
+  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 14~Leitungen),
+  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+  \emph{Gamma-Verteilung} $f(x - 52)$ mit $k = 9,522$ und $\theta = 0,867$.}
+  \label{fig:markov-comparators-14}
 \end{figure}
 
-Abbildung~\ref{fig:32-ec-1277190372} zeigt ein 32-Sortiernetzwerk, dass vom
-\textsc{SN-Evolution-Cut}-Algorithmus aus dem $BS(64)$-Netzwerk erzeugt wurde.
-Es besteht aus 206~Komparatoren in 15~Schichten -- 34~Komparatoren weniger als
-$BS(32)$ und zwei Komparatoren weniger als das Netzwerk, das nach Mühlenthaler
-und Wankas Methode konstruiert wird. Die Anzahl der Schichten ist bei allen
-Netzwerken gleich.
-
-\textbf{TODO:} $BS(128) \rightarrow n=64$: 584~Komparatoren in 21~Schichten
-möglich (nach ca. 600k Iterationen). Moritz und Rolf: $672-80=592$
-Komparatoren; $BS(64)$: 672~Komparatoren.
-
-Schnitt-Sequenz:
-MIN( 92)
-MAX( 80)
-MIN(100)
-MAX( 54)
-MAX(102)
-MAX( 53)
-MAX(105)
-MAX(  6)
-MAX( 99)
-MAX( 79)
-MAX( 26)
-MIN(111)
-MAX( 12)
-MIN( 22)
-MAX( 61)
-MAX( 72)
-MAX( 68)
-MIN( 80)
-MAX( 80)
-MAX( 99)
-MAX(105)
-MAX(  0)
-MIN(  8)
-MAX( 40)
-MAX( 74)
-MAX( 40)
-MAX( 40)
-MIN( 56)
-MAX( 27)
-MAX( 13)
-MAX(  1)
-MAX( 81)
-MAX( 17)
-MAX(  4)
-MIN( 36)
-MIN( 22)
-MAX( 13)
-MIN( 72)
-MAX( 24)
-MAX(  5)
-MIN( 10)
-MAX( 59)
-MIN( 37)
-MAX( 65)
-MAX( 46)
-MAX( 73)
-MAX( 58)
-MAX( 29)
-MAX( 65)
-MIN( 23)
-MAX( 56)
-MAX( 11)
-MIN( 75)
-MIN( 51)
-MIN( 46)
-MIN( 34)
-MAX( 32)
-MAX(  6)
-MAX( 37)
-MIN(  4)
-MIN( 28)
-MIN( 20)
-MAX( 33)
-MAX( 34)
-
-% images/32-ec-1277190372.tex
+\begin{figure}
+  \begin{center}
+  \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-16-pct.pdf}
+  \end{center}
+  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 16~Leitungen),
+  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+  \emph{Gamma-Verteilung} $f(x - 62)$ mit $k = 17,939$ und $\theta = 1,091$.}
+  \label{fig:markov-comparators-16}
+\end{figure}
 
+\newpage
 \section{Empirische Beobachtungen}
 
 \begin{itemize}
@@ -1341,10 +1474,17 @@ MAX( 34)
 \item $\ldots$
 \end{itemize}
 
+\newpage
 \section{Ausblick}
 
 Das würde mir noch einfallen$\ldots$
 
+\newpage
+\section{Implementierung}
+
+So habe ich die ganzen Versuche durchgeführt.
+
+\newpage
 \bibliography{references}
 \bibliographystyle{plain}