Zwei Netzwerke kombinieren: Initiale Version.
authorFlorian Forster <octo@leeloo.octo.it>
Fri, 17 Dec 2010 13:52:20 +0000 (14:52 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Fri, 17 Dec 2010 13:52:20 +0000 (14:52 +0100)
diplomarbeit.tex

index 2545a74..5b6ce59 100644 (file)
@@ -693,11 +693,70 @@ und das Trichtermuster zu sehen.
 
 \subsection{Zwei Netzwerke kombinieren}
 
-\begin{itemize}
-\item Mit dem Bitonic-Merge
-\item Mit dem Odd-Even-Merge
-\item Nach dem Pairwise sorting-network Schema.
-\end{itemize}
+Um Sortiernetzwerke als \emph{Individuen} evolutionärer Algorithmen verwenden
+zu können, muss es möglich sein, zwei Sortiernetzwerke zu einem neuen
+Sortiernetzwerk zusammenzufassen.
+
+Wir haben diese Technik in den vorangegangen Abschnitten bereits verwendet,
+beispielsweise um zwei \emph{bitone Mergesort-Netzwerke} mit jeweils der
+halben Leitungszahl, $\operatorname{BS}\left(\frac{n}{2}\right)$, zu einem
+einzigen Sortiernetzwerk $\operatorname{BS}(n)$ zu kombinieren. Auch das
+\emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(n)$ wurde auf diese Art
+und Weise rekursiv aufgebaut.
+
+Die vorgestellten \emph{Mischer} erwarten als Eingabe zwei bereits sortierte
+Folgen. \emph{Wie} diese Folgen sortiert wurden, ist unerheblich. Entsprechend
+können wir beliebige Sortiernetzwerke einsetzen, um die beiden Eingabefolgen
+zu sortieren, und die Ausgaben mit einem der beschriebenen Mischer
+zusammenfügen.
+
+Beispielsweise kann man die Ausgabe von zwei \emph{bitonen
+Mergesort-Netzwerken} $\operatorname{BS}(8)$ mit je acht Leitungen mit dem
+\emph{Odd-Even-Merge} $\operatorname{OEM(8,8)}$ zu einer sortierten
+Gesamtfolge zusammenfügen. Das resultierende Sortiernetzwerk besitzt
+73~Komparatoren (zum Vergleich: $\operatorname{BS}(16)$ benötigt
+80~Komparatoren, $\operatorname{OES}(16)$ nur 63).
+
+Verbesserungen in der Anzahl der benötigten Komparatoren beziehungsweise der
+Schichten eines „kleinen“ Sortiernetzwerks übertragen sich direkt auf das
+resultierende Gesamtnetzwerk. Das \emph{Odd-Even-Mergesort-Netzwerk}
+$\operatorname{OES}(9)$ benötigt beispielsweise 26~Komparatoren, die in in
+neun Schichten angeordnet sind. Es sind allerdings Sortiernetzwerke mit neun
+Eingängen bekannt, die lediglich 25~Komparatoren in sieben Schichten
+benötigen. Kombiniert man zwei dieser Netzwerke mit dem
+\emph{Odd-Even-Mischer} erhält man ein Sortiernetzwerk mit 18~Eingängen, das
+80~Komparatoren in 11~Schichten benötigt -- $\operatorname{OES}(18)$ benötigt
+82~Komparatoren in 13~Schichten. Damit ist das resultierende Netzwerk so
+schnell wie das Sortiernetzwerk mit 18~Eingängen, das \textit{Baddar} und
+\textit{Batcher} in ihrer Arbeit „An 11-Step Sorting Network for 18~Elements“
+vorstellen, benötigt aber 6~Komparatoren weniger.
+
+% 9   9
+% 9  18
+% 9  27
+% 9  36
+% 9  45
+% 8  53
+% 8  61
+% 7  68
+% 7  75
+% 6  81
+% 5  86
+
+Das Zusammenfassen von zwei Sortiernetzwerken durch Hintereinanderausführung
+ist nicht sinnvoll: Da die Ausgabe des ersten Sortiernetzwerks bereits
+sortiert ist, ist das zweite Sortiernetzwerk überflüssig. Eine
+Aneinanderreihung der Art „die ersten $x$~Schichten des einen, dann die
+letzten $y$~Schichten des anderen Sortiernetzwerks“ zerstören im Allgemeinen
+die Sortiereigenschaft. Die Sortiereigenschaft des resultierenden
+Komparatornetzwerks müsste überprüft werden, was nach heutigem Wissensstand
+nur mit exponentiellem Aufwand möglich ist.
+
+%\begin{itemize}
+%\item Mit dem Bitonic-Merge
+%\item Mit dem Odd-Even-Merge
+%\item Nach dem Pairwise sorting-network Schema.
+%\end{itemize}
 
 \subsection{Leitungen entfernen}\label{sect:leitungen_entfernen}
 
@@ -709,7 +768,7 @@ sich die Anzahl der Eingänge nicht verändert. Das heißt, dass wir wieder ein
 Sortiernetzwerk mit $n$~Eingängen erhalten müssen.
 
 Man kann ein gegebenes Sortiernetzwerk mit $n$~Eingängen auf ein
-Sortiernetzwerk mit $(n-1)$~Leitungen verkleinern, indem man eine Leitung
+Sortiernetzwerk mit ${n-1}$~Leitungen verkleinern, indem man eine Leitung
 „eliminiert“. Dazu nehmen wir an, dass das Minimum oder das Maximum an einem
 bestimmten Eingang anliegt. Der Weg, den das Minimum beziehungsweise das Maxim
 durch das Sortiernetzwerk nimmt, ist eindeutig bestimmt und endet an einem der
@@ -726,12 +785,14 @@ das {\em Odd-Even-Transpositionsort-Netzwerk}.
   \subfigure[bar]{\input{images/oe-transposition-cut1.tex}\label{fig:oe-transposition-cut1}}
   \subfigure[baz]{\input{images/oe-transposition-cut2.tex}\label{fig:oe-transposition-cut2}}
   \subfigure[qux]{\input{images/oe-transposition-cut3.tex}\label{fig:oe-transposition-cut3}}
-  \caption{Eine Leitung wird aus dem {\em Odd-Even-Transpositionsort} Netzwerk
-  $\textrm{OET}(8)$ entfernt: Auf der rot markierten Leitung wird $\infty$
-  angelegt. Da der Wert bei jedem Komparator am unteren Ende herauskommt, ist
-  der Pfad fest vorgegeben. Da die restlichen Werte trotzdem noch richtig
-  sortiert werden müssen, kann dieser Pfad herausgetrennt werden. In der
-  letzten Abbildung ist $\textrm{OET}(7)$ markiert.}
+  \caption{Eine Leitung wird aus dem
+  \emph{Odd-Even-Transpositionsort}-Netzwerk $\operatorname{OET}(8)$ entfernt:
+  Auf der rot markierten Leitung wird $\infty$ angelegt. Da der Wert bei jedem
+  Komparator am unteren Ende herauskommt, ist der Pfad fest vorgegeben. Da die
+  restlichen Werte trotzdem noch richtig sortiert werden müssen, kann dieser
+  Pfad herausgetrennt werden. In der letzten Abbildung ist
+  $\operatorname{OET}(7)$ markiert.}
+  \label{fig:oe-transposition-cut}
 \end{figure}
 
 Im nächsten Schritt werden alle beteiligten Komparatoren gelöscht bzw.
@@ -773,6 +834,8 @@ $n-3$,~\dots Eingängen zu erzeugen. Insbesondere können wir auf diese Art und
 Weise einen Sortiernetzwerk mit $2n$~Eingängen wieder auf ein Sortiernetzwerk
 mit $n$~Eingängen reduzieren.
 
+\subsubsection{Der \textsc{SN-Evolution-Cut}-Algorithmus}
+
 Bei einem Sortiernetzwerk mit $n$~Eingängen gibt es $2n$~Möglichkeiten eine
 Leitung zu entfernen: Auf jeder der $n$~Leitungen kann sowohl das Minimum als
 auch das Maximum angenommen werden. Wendet man das Verfahren iterativ an, um