Attached a patch for the rrd-tool LIBDBI integration with the following improvements:
[rrdtool.git] / doc / bin_dec_hex.pod
1 =head1 NAME
2
3 bin_dec_hex - How to use binary, decimal, and hexadecimal notation.
4
5 =for html <div align="right"><a href="bin_dec_hex.pdf">PDF</a> version.</div>
6
7 =head1 DESCRIPTION
8
9 Most people use the decimal numbering system. This system uses ten
10 symbols to represent numbers. When those ten symbols are used up, they
11 start all over again and increment the position to the left. The
12 digit 0 is only shown if it is the only symbol in the sequence, or if
13 it is not the first one.
14
15 If this sounds cryptic to you, this is what I've just said in numbers:
16
17      0
18      1
19      2
20      3
21      4
22      5
23      6
24      7
25      8
26      9
27     10
28     11
29     12
30     13
31
32 and so on.
33
34 Each time the digit nine is incremented, it is reset to 0 and the
35 position before (to the left) is incremented (from 0 to 1). Then
36 number 9 can be seen as "00009" and when we should increment 9, we
37 reset it to zero and increment the digit just before the 9 so the
38 number becomes "00010". Leading zeros we don't write except if it is
39 the only digit (number 0). And of course, we write zeros if they occur
40 anywhere inside or at the end of a number:
41
42  "00010" -> " 0010" -> " 010" -> "  10", but not "  1 ".
43
44 This was pretty basic, you already knew this. Why did I tell it?
45 Well, computers usually do not represent numbers with 10 different
46 digits. They only use two different symbols, namely "0" and "1". Apply
47 the same rules to this set of digits and you get the binary numbering
48 system:
49
50      0
51      1
52     10
53     11
54    100
55    101
56    110
57    111
58   1000
59   1001
60   1010
61   1011
62   1100
63   1101
64
65 and so on.
66
67 If you count the number of rows, you'll see that these are again 14
68 different numbers. The numbers are the same and mean the same as in
69 the first list, we just used a different representation. This means
70 that you have to know the representation used, or as it is called the
71 numbering system or base.  Normally, if we do not explicitly specify
72 the numbering system used, we implicitly use the decimal system. If we
73 want to use any other numbering system, we'll have to make that
74 clear. There are a few widely adopted methods to do so. One common
75 form is to write 1010(2) which means that you wrote down a number in
76 its binary representation. It is the number ten. If you would write
77 1010 without specifying the base, the number is interpreted as one
78 thousand and ten using base 10.
79
80 In books, another form is common. It uses subscripts (little
81 characters, more or less in between two rows). You can leave out the
82 parentheses in that case and write down the number in normal
83 characters followed by a little two just behind it.
84
85 As the numbering system used is also called the base, we talk of the
86 number 1100 base 2, the number 12 base 10.
87
88 Within the binary system, it is common to write leading zeros. The
89 numbers are written down in series of four, eight or sixteen depending
90 on the context.
91
92 We can use the binary form when talking to computers
93 (...programming...), but the numbers will have large
94 representations. The number 65'535 (often in the decimal system a ' is
95 used to separate blocks of three digits for readability) would be
96 written down as 1111111111111111(2) which is 16 times the digit 1.
97 This is difficult and prone to errors. Therefore, we usually would use
98 another base, called hexadecimal. It uses 16 different symbols. First
99 the symbols from the decimal system are used, thereafter we continue
100 with alphabetic characters. We get 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
101 A, B, C, D, E and F. This system is chosen because the hexadecimal
102 form can be converted into the binary system very easily (and back).
103
104 There is yet another system in use, called the octal system. This was
105 more common in the old days, but is not used very often anymore. As
106 you might find it in use sometimes, you should get used to it and
107 we'll show it below. It's the same story as with the other
108 representations, but with eight different symbols.
109
110  Binary      (2)
111  Octal       (8)
112  Decimal     (10)
113  Hexadecimal (16)
114
115  (2)    (8) (10) (16)
116  00000   0    0    0
117  00001   1    1    1
118  00010   2    2    2
119  00011   3    3    3
120  00100   4    4    4
121  00101   5    5    5
122  00110   6    6    6
123  00111   7    7    7
124  01000  10    8    8
125  01001  11    9    9
126  01010  12   10    A
127  01011  13   11    B
128  01100  14   12    C
129  01101  15   13    D
130  01110  16   14    E
131  01111  17   15    F
132  10000  20   16   10
133  10001  21   17   11
134  10010  22   18   12
135  10011  23   19   13
136  10100  24   20   14
137  10101  25   21   15
138
139 Most computers used nowadays are using bytes of eight bits. This means
140 that they store eight bits at a time. You can see why the octal system
141 is not the most practical for that: You'd need three digits to represent
142 the eight bits and this means that you'd have to use one complete digit
143 to represent only two bits (2+3+3=8). This is a waste. For hexadecimal
144 digits, you need only two digits which are used completely:
145
146  (2)      (8)  (10) (16)
147  11111111 377  255   FF
148
149 You can see why binary and hexadecimal can be converted quickly: For
150 each hexadecimal digit there are exactly four binary digits.  Take a
151 binary number: take four digits from the right and make a hexadecimal
152 digit from it (see the table above). Repeat this until there are no
153 more digits. And the other way around: Take a hexadecimal number. For
154 each digit, write down its binary equivalent.
155
156 Computers (or rather the parsers running on them) would have a hard
157 time converting a number like 1234(16). Therefore hexadecimal numbers
158 are specified with a prefix. This prefix depends on the language
159 you're writing in. Some of the prefixes are "0x" for C, "$" for
160 Pascal, "#" for HTML.  It is common to assume that if a number starts
161 with a zero, it is octal. It does not matter what is used as long as
162 you know what it is. I will use "0x" for hexadecimal, "%" for binary
163 and "0" for octal.  The following numbers are all the same, just their represenatation (base) is different: 021 0x11 17 %00010001
164
165 To do arithmetics and conversions you need to understand one more thing.
166 It is something you already know but perhaps you do not "see" it yet:
167
168 If you write down 1234, (no prefix, so it is decimal) you are talking
169 about the number one thousand, two hundred and thirty four. In sort of
170 a formula:
171
172  1 * 1000 = 1000
173  2 *  100 =  200
174  3 *   10 =   30
175  4 *    1 =    4
176
177 This can also be written as:
178
179  1 * 10^3
180  2 * 10^2
181  3 * 10^1
182  4 * 10^0
183
184 where ^ means "to the power of".
185
186 We are using the base 10, and the positions 0,1,2 and 3.
187 The right-most position should NOT be multiplied with 10. The second
188 from the right should be multiplied one time with 10. The third from
189 the right is multiplied with 10 two times. This continues for whatever
190 positions are used.
191
192 It is the same in all other representations:
193
194 0x1234 will be
195
196  1 * 16^3
197  2 * 16^2
198  3 * 16^1
199  4 * 16^0
200
201 01234 would be
202
203  1 * 8^3
204  2 * 8^2
205  3 * 8^1
206  4 * 8^0
207
208 This example can not be done for binary as that system only uses two
209 symbols. Another example:
210
211 %1010 would be
212
213  1 * 2^3
214  0 * 2^2
215  1 * 2^1
216  0 * 2^0
217
218 It would have been easier to convert it to its hexadecimal form and
219 just translate %1010 into 0xA. After a while you get used to it. You will
220 not need to do any calculations anymore, but just know that 0xA means 10.
221
222 To convert a decimal number into a hexadecimal you could use the next
223 method. It will take some time to be able to do the estimates, but it
224 will be easier when you use the system more frequently. We'll look at
225 yet another way afterwards.
226
227 First you need to know how many positions will be used in the other
228 system. To do so, you need to know the maximum numbers you'll be
229 using. Well, that's not as hard as it looks. In decimal, the maximum
230 number that you can form with two digits is "99". The maximum for
231 three: "999". The next number would need an extra position. Reverse
232 this idea and you will see that the number can be found by taking 10^3
233 (10*10*10 is 1000) minus 1 or 10^2 minus one.
234
235 This can be done for hexadecimal as well:
236
237  16^4 = 0x10000 = 65536
238  16^3 =  0x1000 =  4096
239  16^2 =   0x100 =   256
240  16^1 =    0x10 =    16
241
242 If a number is smaller than 65'536 it will fit in four positions.
243 If the number is bigger than 4'095, you must use position 4.
244 How many times you can subtract 4'096 from the number without going below
245 zero is the first digit you write down. This will always be a number
246 from 1 to 15 (0x1 to 0xF). Do the same for the other positions.
247
248 Let's try with 41'029. It is smaller than 16^4 but bigger than 16^3-1. This
249 means that we have to use four positions.
250 We can subtract 16^3 from 41'029 ten times without going below zero.
251 The left-most digit will therefore be "A", so we have 0xA????.
252 The number is reduced to 41'029 - 10*4'096 = 41'029-40'960 = 69.
253 69 is smaller than 16^3 but not bigger than 16^2-1. The second digit
254 is therefore "0" and we now have 0xA0??.
255 69 is smaller than 16^2 and bigger than 16^1-1. We can subtract 16^1
256 (which is just plain 16) four times and write down "4" to get 0xA04?.
257 Subtract 64 from 69 (69 - 4*16) and the last digit is 5 --> 0xA045.
258
259 The other method builds ub the number from the right. Let's try 41'029
260 again.  Divide by 16 and do not use fractions (only whole numbers).
261
262  41'029 / 16 is 2'564 with a remainder of 5. Write down 5.
263  2'564 / 16 is 160 with a remainder of 4. Write the 4 before the 5.
264  160 / 16 is 10 with no remainder. Prepend 45 with 0.
265  10 / 16 is below one. End here and prepend 0xA. End up with 0xA045.
266
267 Which method to use is up to you. Use whatever works for you.  I use
268 them both without being able to tell what method I use in each case,
269 it just depends on the number, I think. Fact is, some numbers will
270 occur frequently while programming. If the number is close to one I am
271 familiar with, then I will use the first method (like 32'770 which is
272 into 32'768 + 2 and I just know that it is 0x8000 + 0x2 = 0x8002).
273
274 For binary the same approach can be used. The base is 2 and not 16,
275 and the number of positions will grow rapidly. Using the second method
276 has the advantage that you can see very easily if you should write down
277 a zero or a one: if you divide by two the remainder will be zero if it
278 is an even number and one if it is an odd number:
279
280  41029 / 2 = 20514 remainder 1
281  20514 / 2 = 10257 remainder 0
282  10257 / 2 =  5128 remainder 1
283   5128 / 2 =  2564 remainder 0
284   2564 / 2 =  1282 remainder 0
285   1282 / 2 =   641 remainder 0
286    641 / 2 =   320 remainder 1
287    320 / 2 =   160 remainder 0
288    160 / 2 =    80 remainder 0
289     80 / 2 =    40 remainder 0
290     40 / 2 =    20 remainder 0
291     20 / 2 =    10 remainder 0
292     10 / 2 =     5 remainder 0
293      5 / 2 =     2 remainder 1
294      2 / 2 =     1 remainder 0
295      1 / 2 below 0 remainder 1
296
297 Write down the results from right to left: %1010000001000101
298
299 Group by four:
300
301  %1010000001000101
302  %101000000100 0101
303  %10100000 0100 0101
304  %1010 0000 0100 0101
305
306 Convert into hexadecimal: 0xA045
307
308 Group %1010000001000101 by three and convert into octal:
309
310  %1010000001000101
311  %1010000001000 101
312  %1010000001 000 101
313  %1010000 001 000 101
314  %1010 000 001 000 101
315  %1 010 000 001 000 101
316  %001 010 000 001 000 101
317     1   2   0   1   0   5 --> 0120105
318
319  So: %1010000001000101 = 0120105 = 0xA045 = 41029
320  Or: 1010000001000101(2) = 120105(8) = A045(16) = 41029(10)
321  Or: 1010000001000101(2) = 120105(8) = A045(16) = 41029
322
323
324 At first while adding numbers, you'll convert them to their decimal
325 form and then back into their original form after doing the addition.
326 If you use the other numbering system often, you will see that you'll
327 be able to do arithmetics directly in the base that is used.
328 In any representation it is the same, add the numbers on the right,
329 write down the right-most digit from the result, remember the other
330 digits and use them in the next round. Continue with the second digit
331 from the right and so on:
332
333     %1010 + %0111 --> 10 + 7 --> 17 --> %00010001
334
335 will become
336
337     %1010
338     %0111 +
339      ||||
340      |||+-- add 0 + 1, result is 1, nothing to remember
341      ||+--- add 1 + 1, result is %10, write down 0 and remember 1
342      |+---- add 0 + 1 + 1(remembered), result = 0, remember 1
343      +----- add 1 + 0 + 1(remembered), result = 0, remember 1
344             nothing to add, 1 remembered, result = 1
345  --------
346    %10001 is the result, I like to write it as %00010001
347
348 For low values, try to do the calculations yourself, then check them with
349 a calculator. The more you do the calculations yourself, the more you'll
350 find that you didn't make mistakes. In the end, you'll do calculi in
351 other bases as easily as you do them in decimal.
352
353 When the numbers get bigger, you'll have to realize that a computer is
354 not called a computer just to have a nice name. There are many
355 different calculators available, use them. For Unix you could use "bc"
356 which is short for Binary Calculator. It calculates not only in
357 decimal, but in all bases you'll ever want to use (among them Binary).
358
359 For people on Windows:
360 Start the calculator (start->programs->accessories->calculator)
361 and if necessary click view->scientific. You now have a scientific
362 calculator and can compute in binary or hexadecimal.
363
364 =head1 AUTHOR
365
366 I hope you enjoyed the examples and their descriptions. If you do, help
367 other people by pointing them to this document when they are asking
368 basic questions. They will not only get their answer, but at the same
369 time learn a whole lot more.
370
371 Alex van den Bogaerdt  E<lt>alex@ergens.op.het.netE<gt>